

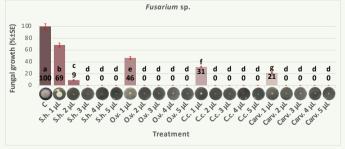
In Vitro Evaluation of the Antifungal Effect of Carvacrol-based Essential Oils on Alternaria and Fusarium Fungi

Vasileios Papantzikos, Georgios Patakioutas and Paraskevi Yfanti

Department of Agriculture, University of Ioannina, Arta Campus, 47100, Greece

INTRODUCTION

Phytopathogenic fungi are the main source of important economic losses in fruits and vegetables after harvest, during their storage, transportation, and marketing. Due to the high toxicity of the synthetic fungicides, their long degradation period, and residuality, their use has been placed under a regime of restrictive measures on postharvest disease control [1]. The use of essential oils (EOs) from some aromatic plants is an alternative and environmentally friendly method for crop protection from post-harvest diseases. In this work was studied in vitro the antifungal effect of three Lamiaceae family EOs; Satureja horvatii ssp. macrophylla, Coridothymus capitatus, and Origanum vulgare ssp. hirtum on the phytopathogenic fungi Fusarium and Alternaria sp.



atic presentation of the EOs preparation, and fumig

The EOs used in the experiments were obtained by hydro-distillation (Fig. 1) and their analysis (Table 1) was performed by GC-MS (Master GC- TOF MS, Dani) equipped with an autosampler. Infected potato tubers and tomato fruits with symptoms of dry rot (Fig 2A) and black spot (Fig 2B), respectively, were transported to the laboratory and isolated. The Fumigant effect of the EOs S. horvatii ssp. macrophylla (S.h.), O. vulgare ssp. hirtum (O.v.), C. capitatus (C.c.), and Carvacrol (Carv.) was evaluated in multiple quantities (1-2-3-4-5 μL EO plate-1) on the radical growth of Fusarium sp. (Fig 3) and Alternaria sp. (Fig 4) after 8 days of exposure on PDA petri plates, and calculated as a percentage (%±SE) compared to the control (C=0 µL EO plate-1).

RESULTS & DISCUSSION

After 8 days of incubation, the Fusarium sp. growth was completely inhibited in the presence of carvacrol, and the EOs of C. capitatus, and O. vulgare ssp. hirtum at the amount of 2 µL plate-1 with a statistically significant difference with C (100%) (p<0.001). In the case of S. horvatii ssp. macrophylla, the mycelial growth was completely inhibited at 3 µL plate-1 with a statistically significant difference with the C ($p \le 0.001$).

re 3. The furnigant effect of the EOs on the radical growth (%±SE) of *Fusarium* sp. on PDA petri plates after 8 days of incubation. Different letters between treatments represent a statistically significant difference (LSD p≤0.05).

CONCLUSIONS

With the proper standardization and formulation, these EOs could be used for post-harvest applications and for the disinfection of storage warehouses from Fusarium sp. and Alternaria sp. as opposed to synthetic agrochemicals the EO utilization has the advantages of low toxicity for humans and the environment.

After 8 days of incubation, the Alternaria sp. growth was completely inhibited carvacrol, and the EOs of C. capitatus and O. vulgare ssp. hirtum at the amount of 3 µL plate-1, presenting a statistically significant difference with C (p<0.001), according to Figure 2. In the case of S. horvatii ssp. macrophylla, the mycelial growth was completely inhibited at the amount of 5 μ L plate-1 with a statistically significant difference with the control (p<0.001).

Table 1. Chemical composition (GC-MS) of the three EQs used in the experiment						
Table 1. Chemical composition (GC-MS						
	RT	RI		Area (%)		
No	RT	RI	Compounds	O. vulgare	C. capitatus	S. horvatii ssp.
				ssp. hirtum		macrophylla
- 1	6.09	928	a-Thujene	2.3	0.9	1.3
2	6.36	937	a-Pinene	1.1	0.7	1.4
3	6.89	955	Camphene			1.8
4	7.76	986	1-Octen-3-ol	1.2	0.8	1.7
5	7.98	993	a-Myrcene	3.0	1.9	1.1
6	8.68	1012	a-Phellandrene	0.6	0.4	0.2
7	9.03	1023	a-Terpinene	2.9	2.4	1.6
8	9.40	1033	p-Cymene	10.2	6.2	12.9
9	9.53	1035	Limonene	0.4	0.4	0.6
10	6.19	1038	b-Phellandrene	0.6	0.5	
11	9.76	1039	1.8-cineole			1.4
12	10.59	1065	y-Terpinene	9.2	5.7	5.5
13	11.13	1180	cis sabinene hydrate	1.4		1.1
14	12.25	1107	Linatool		1.4	1.6
15	15.55	1185	Borneol	0.8	1.8	5.0
16	15.84	1192	Terpinene-4-ol	0.8	1.1	1.3
17	16.24	1201	p-Cymen-8-ol			0.3
18	16.55	1207	a-Terpineol			0.4
19	18.41	1242	Thymol methyl ether			3.2
20	21.86	1304	Thymol	18.9		6.2
21	22.68	1313	Carvacrol	42.5	70.0	41.4
22	31.417	1424	Caryophyllene	2.7	4.9	4.5
23	32.72	1444	Aromadendrene			0.6
24	33.85	1461	a-Humulene			0.3
25	36.06	1494	Viridiflorene			0.3
26	36.347	1498	y-Elemene			1.5
27	37.10	1514	β-Bisabolene	1.0	0.3	
28	40.63	1591	Spathulenol			0.9
29	40.75	1594	Caryophyllene oxide	0.4	0.8	2.0
Monoterpene hydrocarbons				30.3	19.0	26.5
Oxygenated monoterpens				62.9	74.2	57.6
Sesquiterpene hydrocarbons				3.8	5.2	7.0
Oxygenated sesquiterpenes				0.4	0.8	2.9
Others				2.6	0.8	5.9
RI =			lative to n-alkanes on	BPX-5 capilla	ry column; RT	Retention Time.

The EOs C. capitatus and O. vulgare ssp. hirtum showed a mycostatic effect on Fusarium sp. at 3-5 µL plate-1. S. horvatii ssp. macrophylla EO presented a mycostatic effect on Fusarium sp. at 5 μL plate-1. The carvacrol demonstrated a mycostatic effect on Fusarium sp. at 2-4 μL plate⁻¹ and mycotoxic at 5 μL plate-1. The effect of carvacrol on Alternaria sp. was mycostatic at 3-5 µL plate⁻¹.

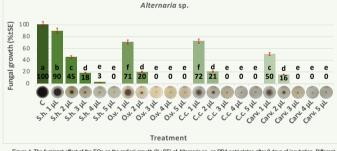


Figure 4. The furnigant effect of the EOs on the radical growth (%±SE) of Alternaria sp. on PDA petri plates after 8 days of incubation. Different letters between treatments represent a statistically significant difference (LSD p≤0.05).

The inhibitory effect of EOs on the mycelial growth of Fusarium sp. was greater compared to Alternaria sp. The EOs were effective, and this may be attributed to their high content of the terpenic phenols carvacrol and thymol. Carvacrol can inhibit ergosterol synthesis in a dose-dependent manner to Rhizopus stolonifer that causes postharvest rot in peaches [2]. Zhao et al. 2023 [3] suggest that carvacrol inhibits membrane-associated polycarbohydrates such as chitinase and 6-1,3-glucanase and Wang et al. 2024 [4] observed the inhibitory effect of carvacrol on Alternaria sp. The antifungal impact of carvacrol [5,6] comes in agreement with this study on Fusarium sp. and Alternaria sp. A similar mode of carvacrol has been reported on Fusarium moniliforme, Rhizoctonia solani, Sclerotinia sclerotiorum, and Phytophthora capsici [7]. As the carvacrol content or the terpene phenol content increases, the minimum EO amount that inhibits fungal growth decreases, as shown in Figures 3 and 4 following the EOs composition in Table 1.

RESOURSES

- . ng, H.; Wang, P.; Wang, C.; Zhou, Y.; Li, H.; Yu, S.; Wu, R. Inhibitory Effect of Carvacrol against Alternaria Alternata Causing Goji Fruit Rot by Disrupting the Integrity and Con box 2023, 14, 1139745, doi:10.3399/fmicb.2023.1139749. np. P. Zhou, L. Zhora, H.; Ou, H. V.; Inhibitory Effect and Mechanism of Canvacrol against Black Mold Disease Apent Alternatia Alternata in Goji Benies, Journal of Fur np. P. Zhou, L. Zhora, H.; Ou, H. V.; Inhibitory Effect and Mechanism of Canvacrol against Black Mold Disease Apent Alternatia Alternata in Goji Benies, Journal of Fur
- erni, A. Antifungal Effect of Zataria Multifora Essence on Expe
- V.; W.Biowić, I.; Milojavić, N.; Waković-Galici, B.; Marin, P.D. Antioxidative, Antibacterial and Antifungal Activity of the Essential Oil of Wild-Gro 2012, 27, 216–223, doi:10.1009FEJ.3082. en. O. Chemical Commodition and Funnitiation Properties to District Service Comments of the Activity of the Essential Oil of Wild-Gro verties to Phytopathogenic Fungi of Essential Oils of Selected Aromatic Plants Growing Wild in Turkey. J Agric Food Ch