EVALUATION OF A NATURAL EXTRACT AS A PRESERVATIVE IN A BANANA FILLINGS FOR PASTRY: A CLEAN LABEL ALTERNATIVE

Elisabetta Tomé¹, Teresa Bento de Carvalho¹, Beatriz Nunes Silva¹, Beatriz Silva², Isabel Oliveira², Miguel Azevedo², Paula Teixeira¹*

¹Universidade Católica Portugesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1827, 4169-005 Porto,

Portugal

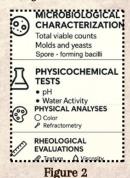
²Decorgel - Produtos Alimentares S.A., Rua do Progresso, 363 - Lantemil, 4785-647 Trofa
*Corresponding author: pcteixeira@ucp.pt

INTRODUCTION

The growing consumer demand for more natural food products has driven the development of clean label alternatives that exclude synthetic preservatives. In this context, natural alternatives have gained attention as potential substitutes for synthetic preservatives traditionally used in the food industry. Fruit fillings, widely used in bakery and pastry products, are characterized by low acidity, low water activity, and high sugar content, making them particularly susceptible to fungal contamination

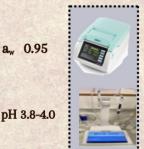
OBJECTIVE

This study evaluates the efficacy of a group of berry extract and tapioca starch rich in sorbic acid, applied at two concentrations (0.5% and 1%), as a preservative in an industrially produced banana filling. Product stability was monitored over a 70-day storage period at 22°C and 62% relative humidity and compared to a control sample containing potassium sorbate.



METHOD

To evaluate the impact of replacing potassium sorbate with natural preservatives, the following prototipes were developed (Fig. 1). Microbiological analyses, total viable counts, molds and yeasts, aerobic and anaerobic spore forming bacilli were performed, throughout the storage period, along with physicochemical and rheologycal tests (Figures 1 and 2)


Preservative Purpose		
Prototype	Used	Purpose
Α	Potassium Sorbate	Reference
В	None	NEGATIVE CONTROL
С	1% Red Fruits Extract	NATURAL REPLACEMENT
D	0.5% Red Fruits Extract	NATURAL REPLACEMENT

RESULTS & DISCUSSION

- By the end of the storage period, mold and yeasts counts were minimal. No growth of aerobic or anaerobic spore-forming bacilli was detected. Total viable counts increased after 49 days in samples containing 0.5% of the natural preservativo.
- pH and water activity remai de stable across all prototipos with no significante differences compared to the samples with and without potassium sorbate.
- A shift toward more reddish and yellowish tones was observed in the banana fillings over time, possibly associated with chemical reactions that may affect product quality.
- A slight increase in Brix was observed during storage, possibly due to texture changes and crystal formation, which may affect product smoothness.
- From a rheological perspective, all prototypes exhibited pseudoplastic behavior, a desirable property in pastry fillings as it facilitates spreadability. Both clean label preservative formulations and those with potassium sorbate showed decreased viscosity with increasing shear rate (Figure 3)

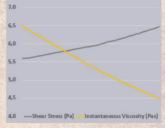


Figure 3

CONCLUSIONS

Natural extract treatments controlled microbial growth and preserved product stability. Results support their potential as sustainable alternatives to synthetic preservatives in bakery fillings, aligning with clean label consumer preferences

AKNOWLEDGEMENTS

This work was developed in the scope of the project "Agenda VIIAFOOD project - Platform for Valorization, Industrialization and Commercial Innovation for the Agro-Food Industry, funded by the Portuguese Recovery and Resilience Plan ("PRR") in its component 5 - Capitalization and Business Innovation, under the Regulation of the Incentive System "Agendas for Business Innovation" and Invitation Notice n. 02/C05-i01/2022, and specifically in the sub-project "Development of preservative free preparations to the pastry industry with natural ingredients" Special thank you to Decorgel's Research & Development Department, Trofa, Portugal, for the collaboration and the opportunity.

