

Nannochloropsis sp. extract as a potential functional ingredient for food applications

V.F.R. Martins, A.I. Lopes, M. Machado, M.E. Pintado, R.M.S.C. Morais, A.M.M.B. Morais*
Universidade Católica Portuguese; Escola Superior de Biotecnologia; Centro de Biologia e Quimica Fina

* Corresponding author

INTRODUCTION & AIM

Microalgae, particularly *Nannochloropsis* sp., have gained attention due to their rich composition in lipids, carbohydrates, proteins and bioactive compounds, such as polyunsaturated fatty acids (PUFAs) carotenoids, and phenolic compounds. These molecules are associated with heath promoting effects including antioxidant, anti-inflammatory, antimicrobial properties and prevention of coronary heart disease, making them promising candidates for nutraceutical and functional food applications.

The extraction of bioactive compounds from *Nannocloropsis* sp. using green technologies allows a sustainable up-scale to use this extract as a functional food ingredient.

Exploring *Nannochloropsis* sp. bioactive rich-extract can contribute not only to sustainable food innovation but also to the development of bioactive ingredients capable of supporting human health and disease prevention.

METHODS

- *Nannochloropsis* sp. freeze-dried microalga biomass was used (Fig. 1).
- The extraction was performed using an ultrasoundassisted extraction (USAE), 90% ethanol (20 kHz, 30 s pulses, 10 min) (Figs. 2 and 3).

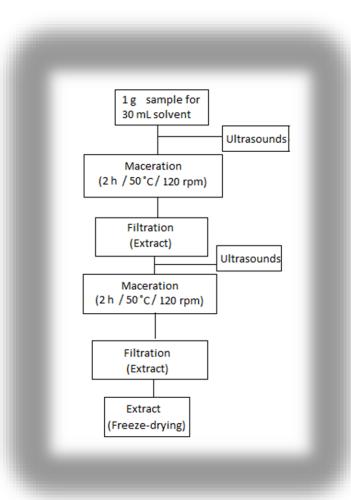
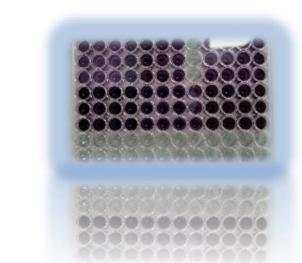


Figure 3. USAE equipment.

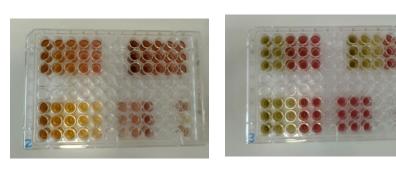
Figure 1. *Nannocloropsis* sp. Freezedried biomass.

Figure 4. *Nannocloropsis* sp. bioactive-rich extract.

Figure 2. USAE methodology.


- GC-FID was performed to determine the fatty acids profile (Saturated Fatty Acids and Unsaturated Fatty Acids, Monounsaturated fatty acids and Polyunsaturated fatty acids)
 - Determination of Total Phenolic Content and Antioxidant Acrivity
 - ✓ Folin Ciocalteu
 - ✓ ABTS assay
 - ✓ DPPH assay
 - ✓ ORAC assay
- Determination of Antimicrobial activity
 - ✓ Minimal Concentration Inhibition (MIC)
 - ✓ Minimal Bactericidal Concentration (MBC)

Gram negative species tested were:


- > Escherichia coli ATCC 25922,
- Yersinia enterocolitica NCTC 10406, and
- Salmonella enterica serovar Enteritidis ATCC 13076

Gram positive species tested were:

- ➤ Staphylococcus aureus ATCC 6538
- Bacillus cereus NCTC 2599
- Listeria monocytogenes NCTC 10357

Figure 5. *Nannocloropsis* sp. bioactive-rich extract tested for ABTS performed in microplate 96 wells.

Figure 6. *Nannocloropsis* sp. bioactive-rich extract tested for MIC and MBC performed in microplate 96 wells.

RESULTS & DISCUSSION

Main fatty acids in the extracts:

- Palmitic acid intake is 20-30 g/day that corresponds to 8-10% of total calories (energy).
- SFA 310.7 ±2 1.03 mg/g
 Myristic acid intake
 recommendation is around 0.5 to
 2% of total calories.
 SFA 67.45 ± 2.82 mg/g)
- Palmitoleic acid MUFA present in some foods but also converted in the human organism from palmitic acid; nutritional guidelines don't mention its recommended daily intake.
- USFA MUFA 235.03 ± 11.25 mg/g
 Eicosapentaenoic acid WHO
 recommends a daily intake of 200
 to 500 mg of EPA+ DHA;
 American Heart Association
 recommends 500 mg/day as a
 preventive measure; and EFSA
 recommends 250 mg/day of EPA +
 DHA intake for adults.

USFA PUFA 165.34 ± 5.82 mg/g

Table 1. Fatty acids quantification. Chain lenghth Quantity (mg/g) Caprylic acid 0.409 ± 0.073 Capric acid C10 0.378 ± 0.049 Lauric acid C12 2.724 ± 0.112 C14 67.45 ± 2.837 Myristic acid 0.886 ± 0.003 Pentadecylic acid C15 5.314 ± 0.229 4.754 ± 1.090 cis-10-Pentadecenoic Acid C15:1 *c*10 Palmitic acid C16 310.7 ± 21.03 0.531 ± 0.098 Palmitoleic acid C16:1 c7 235.03 ± 11.25 Palmitoleic acid C16:1 c9 C17 2.587 ± 0.148 Margaric acid cis-10-Heptadecenoic acid C17:1 c10 0.953 ± 0.108 4.061 ± 3.551 Stearic acid C18 Elaidic acid C18:1 t9 0.165 ± 0.008 Oleic acid C18:1c9 70.175 ± 4.630 Linoleic acid (ω-6) C18:2 c6 32.105 ± 1.914 Arachidic acid C20 1.913 ± 0.457 γ-linolenic acid (ω-6) γ C18:3 0.206 ± 0.012 0.196 ± 0.011 α C18:3 1.374 ± 0.084 α -linolenic acid (ω -3) C21 0.442 ± 0.029 C22:2 *c*11 *c*14 0.626 ± 0.008 Eicosadienic acid C22 0.429 ± 0.057 Dihomo-y-linolenic acid (ω-6) C20:3 c8 c11 c14 64.788 ± 3.21 Erucic acid C22:1 *c*13 0.520 ± 0.105 C20:3 c11 c14 c17 0.852 ± 0.043 Eicosatrienoic acid (ω-3) Arachidonic acid C20:4 1.513 ± 0.012 Eicosapentaenoic acid (ω-3) C20:5 165.34 ± 5.82 C23 0.463 ± 0.052 Tricosylic acid 0.202 ± 0.006 Docosadienoic acid C22:2 c13 c16 C24 0.078 ± 0.005 Lignoceric acid C24:1 0.122 ± 0.045 0.505 ±0.012 C22:6 Σ fat acids 978.265 ± 55.495 Σ SFA 580.706 ± 28.182 Σ MUFA 313.179 ± 17.128 Σ PUFA 265.149 ± 11.040 Σ Mufa + Σ PUFA 578.329 ± 28.168 Σ PUFA ω -3 230.636 ± 9.027

 33.139 ± 1.929

Σ PUFA ω-6

 Table 2. Nutrition quality of Nannochloropsis sp. USAE extract.

Nutrition parameters	Quantity (mg/g)	
Index of Atherogenicity (AI)	1.01 ± 0.007	
Index of Thrombogenicity (TI)	0.43 ± 0.009	
Hypocholesterolemic/Hypercholesterolemic Ratio (HH)	0.88 ± 0.013	
Health-Promoting Index (HPI)	0.99 ± 0.007	

 Table 3. Bioactivity of Nannochloropsis sp. USAE extract.

Bioactive-rich Extracts	TPC	ABTS	DPPH	ORAC
	(mg GAE/g DW)		(μmol TE/g DW)	
Nannochloropsis sp.	5.7 ± 1.0	13.5 ± 2.7	2.5 ± 0.6	75.3 ± 6.8

Nannochloropsis sp. ethanolic extracts are more effective against Gram+ than Grambecause Gram- bacteria have an outer membrane (lipopolysaccharides + proteins), which acts as a permeability barrier [18]. Gram+ bacteria lack this barrier. Ethanol extracts pull out more lipophilic compounds (fatty acids, chlorophylls, carotenoids), and these compounds have membrane-disrupting effects, which can sometimes enhance activity against Gram- bacteria compared with aqueous extracts, but still Gram+ bacteria are more sensitive overall [18].

 Table 4. Antimicrobial properties of Nonnochloropsis sp. USAE extract.

Bacteria	MIC	MBC
Escherichia coli	1.25	>5
Yersinia enterocolitica	0.63	>5
Salmonella enterica Serovar Enteritis	1.25	>5
Staphylococcus aureus	1.25	>5
Bacillus cereus	>5	>5
Listeria monocytogenes	1.25	>5

CONCLUSIONS

The USAE allows a *Nannochloropsis* sp. bioactive-rich extract with balanced fatty acids composition and moderate antioxidant potential, while antimicrobial activity remains limited. The extract shows a promise potential as functional ingredient for food formulations aimed at cardiovascular health. However, at therapeutic doses, the SFA contribution must be considered to ensure dietary safety.

FUTURE WORK

Future work should focus on purifying EPA-rich fractions and improving bioactivity through micro/nanoencapsulation for enhanced antioxidant and antimicrobial effects. Optimization of extraction, stabilization and packaging will be crucial to preserve bioactive integrity. Additionally, toxicological and clinical validation are needed before commercial application as a functional ingredient or nutraceutical.