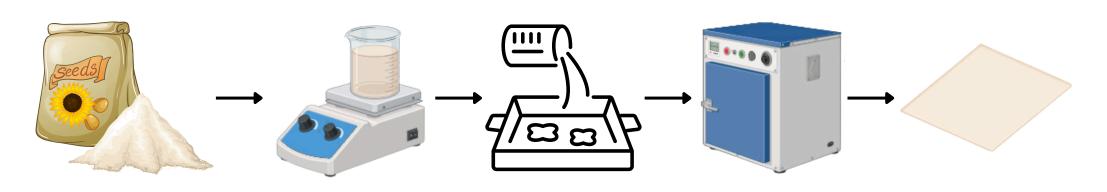

Combining pectin and sunflower seed protein for the development of biodegradable films with potential application in food packaging

Noemi de Paula Almeida¹, Bárbara L. S. Freitas¹, Layla T. O Alves¹, Leandro S. Oliveira², Adriana S. Franca²

¹PPGCA, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil ²DEMEC, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil

INTRODUCTION & AIM



This study aimed to develop and characterize biopolymeric films formulated from isolated sunflower seed protein (SSP) combined with commercial citrus pectin (CPEC) in different proportions.

METHOD

• Film preparation

SSP:CPEC proportions: 1:4; 2:3; 3:2; 4:1

Caracterization

Optical, Barrier and mechanical properties; and soil biodegradability

RESULTS & DISCUSSION

Optical properties

UNIVERSIDADE FEDERAL **SSP100** DE MINAS GERAIS SSP80- UNIVERSIDADE FEDERAL CPEC20 DE MINAS GERAIS SSP60- UNIVERSIDADE FEDERAL CPEC40 DE MINAS GERAIS UNIVERSIDADE FEDERAL SSP40-CPEC60 DE MINAS GERAIS SSP20- UNIVERSIDADE FEDERAL CPEC80 DE MINAS GERAIS UNIVERSIDADE FEDERAL PEC100 DE MINAS GERAIS

c*: SSP80-20 and CPEC100 were the only samples that differed significantly from the others.

h: SSP100 showed no difference compared to the blends.

Opacity: only SSP40-60CPEC was considered opaque (opacity > 5).

Mechanical properties

Tensile strength (MPa): highest for CPEC100 (13.12 ± 2.25); lowest for SSP100 (1.20 ± 0.10).

Elongation at break(%): highest for
SSP100 (219.20 ±
29.10); lowest for
CPEC100 (115.44 ±
2.36).

Elasticity modulus (MPa): highest for CPEC100 (296.50 ± 51.70); lowest for SSP100 (3.88 ± 0.75).

Barrier properties

Water Vapor
Permeability Rate
(x 10⁻³ g/s.m²): no
significant difference
between all
samples.

Water Vapor Permeability (x10⁻³ g/s.m.Pa): highest for SSP40-CPEC60 (4.53 ± 0.20); lowest for CPEC100 and SSP80-CPEC20 (2.58 ± 0.07 and 2.81 ± 0.09).

Oxygen permeability (x10-9 g/s.mm²): highest for SSP100 (4.16 ± 0.13); lowest for SSP80-CPEC20 and CPEC100 (3.85 ± 0.06 and 3.79 ± 0.05).

Soil biodegradability

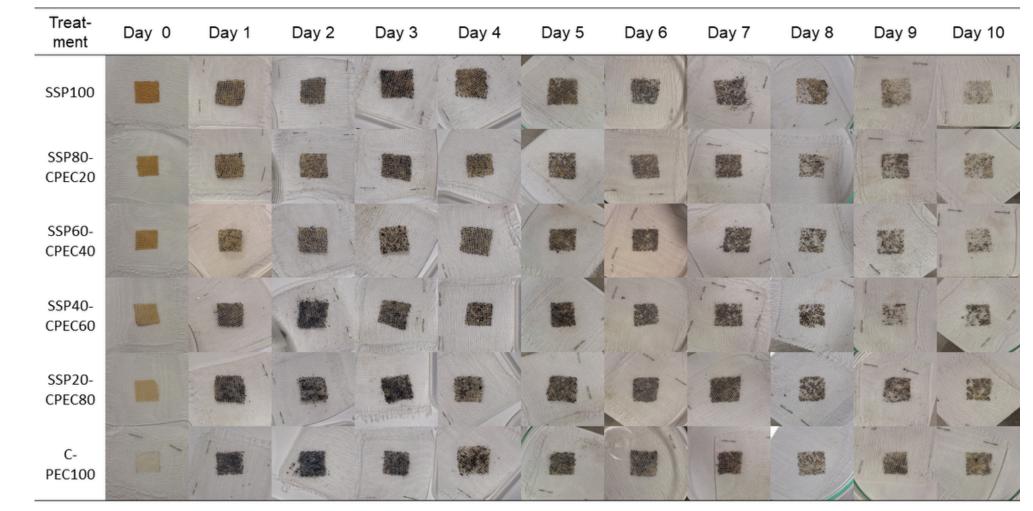


Figure 1 - Biodegradability results for the control and blend films

- No linear correlation between the pectin/protein ratio and barrier or mechanical properties;
- Addition of pectin led to films that were more rigid and less flexible;
- The film containing 80% protein and 20% pectin exhibited the lowest permeability values (except WVPR);
- All the prepared films showed complete soil degradation after 10 days of exposure, except those with higher amounts of pectin (80 and 100%).

CONCLUSION

It was concluded that it is feasible to produce films based on pectin combined with protein isolated from sunflower seeds, representing a sustainable alternative to conventional plastic packaging.

ACKNOWLEDGEMENTS

This work was supported by the National Council for Scientific and Technological Development (CNPq), by Prof. Dr. Herman Mansur from the Center for Nanoscience, Nanotechnology and Innovation(CeNano²I/CEMUCASI/UFMG) for laboratory support, and by the Graduate Program in Food Science (PPGCA/UFMG).