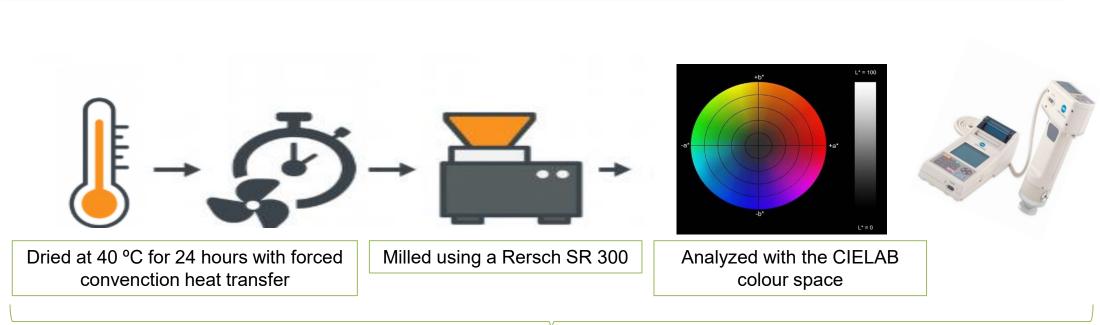
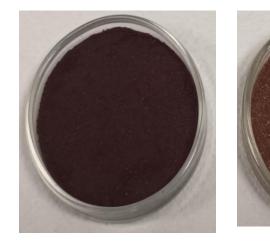
The 6th International Electronic Conference on Foods

28-30 October 2025 | Online

Valorisation of agri-food waste through the use of colourimetry


Adriana R. Machado 1,2; Gonçalo Sá 1; João Nunes1,3; Manuela Pintado 2


- 1 Associação CECOLAB-Collaborative Laboratory towards Circular Economy, Business Centre, Rua Nossa Senhora da Conceição, 2, Oliveira do Hospital 3405-155, Portugal
 - 2 Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
 - 3 Association BLC3 Technology and Innovation Campus, R&D Unit Centre Bio, Rua Nossa Senhora da Conceição, 2, Oliveira do Hospital 3405-155, Portugal

INTRODUCTION & AIM

- Valorising agri-food waste supports nutrition, functionality, and the circular economy;
- Pigmented residues (e.g., grape pomace, prunings, stalks, brewing by-products) are natural colours and bioactive sources;
- Their colourimetric profiles guide selection the formulation of vegan sausages for consumer-appealing foods.
- > This study aimed to characterise the colourimetric properties of flours produced from such waste.

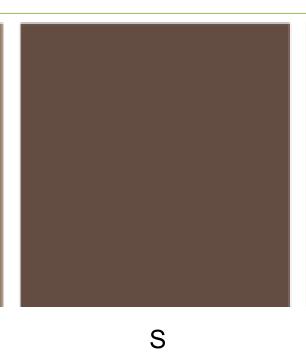
METHOD

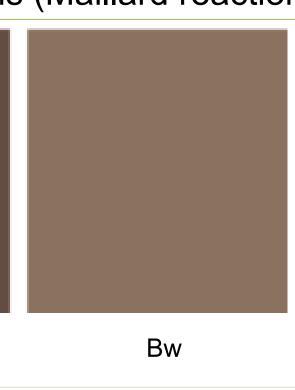
Grape pomace

Grape Prunning

Grape pomace (GP)

- Lowest lightness (L = 21.18*)
- Most intense red (a = 12.11*)
- Linked to anthocyanins & tannins


Brewery waste (Bw)


- High luminosity
- Highest yellow value (b = 14.67*)
- Linked to melanoidins (Maillard reaction)

Stalks (S)

- Intermediate luminosity
- Reddish & yellowish tones

Grape pruning (Gpn)

- Highest luminosity (L =54.55*)
- Strongest yellowing (b = 13.29*)
- Associated with lignin & not-pigmented phenols
- •Differences reflect phenolic composition, lignin and natural pigments (anthocyanins, flavonoids, betalains).
- •Although not quantified this compounds were performed, the colorimetric profiles allow preliminary characterization and differentiation.

CONCLUSION

Colour-rich agri-food by-products are promising natural ingredients that enhance nutritional value, functionality, and visual appeal, contributing to more sustainable food systems. These findings provide a foundation for future research and innovation aimed at valorizing by-products in the food chain through sustainable and creative applications.

FUTURE WORK / REFERENCES

Future works may investigate the development of portable colorimetric sensors optimized for the direct monitoring of bioactive compounds in agri-food waste streams.

Yadav, S., Malik, K., Moore, J. M., Kamboj, B. R., Malik, S., Malik, V. K., Arya, S., Singh, K., Mahanta, S., & Bishnoi, D. K. (2024). Valorisation of Agri-Food Waste for Bioactive Compounds: Recent Trends and Future Sustainable Challenges. Molecules, 29(9), 2055. https://doi.org/10.3390/molecules29092055

Acknowledgments:

Missão Interface within the PRR-Plano de Recuperação e Resiliência (RE-C05-i02-Missão Interface-nº 01/C05-i02/2022), Base Funding for Collaborative Laboratories under the PRR (Plano de Recuperação e Resiliência), and funded by the European Union Next Generation EU.

-BEIRALMA Project (MPr-2023-8) The project has received financial support from operation no. 21356, operation code COMPETE 2030-FEDER-02225200.