

The 6th International Electronic Conference on Foods

28-30 October 2025 | Online

Piezoelectrically Treated Water: Structural Modifications and Implications for Hydration, **Nutrition, and Food Quality**

G. Goderdzishvili¹, Mark Jones¹, Abhishek Tippa², Krishna Madappa², Srinivasan Vithoba², Harsha Marle Krishna², P. Kačer¹ ¹Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6, Czech Republic ²4th Phase Water Technologies Pvt Ltd - Jiva Water Bengaluru, Karnataka, 560070, India

INTRODUCTION & AIM

INTRODUCTION

- **♦** The piezoelectric effect is the ability of certain crystalline materials to generate an electric charge when exposed to mechanical stress.
- ♦ Though it does not alter water's molecular structure, piezoelectricity can affect water behavior by influencing hydrogen-bond orientation, ion distribution, and interfacial structuring.

<u>AIM</u>

- "To study the influence of piezoelectric treatment on water's hydrogen bonding, density, and viscosity."
- ♦ "To assess its applications in biological systems (blood, beer, and tomatoes) and in food quality improvement."

METHOD

SAMPLES

- •Normal Tap Water (22 °C) Piezoelectrically Treated Tap Water (22 °C)
- **ANALYTICAL TECHNIQUES**
- Near-Infrared Fourier Transform Infrared Spectroscopy (FTIR)
- Near-Infrared Spectroscopy (NIR) Nuclear Magnetic Resonance (NMR)
- Pycnometric Density Measurement
- Kinematic and Dynamic Viscosity Measurements

NIR SPECTROSCOPY:

Applications and Benefits of Piezoelectrically Treated Water

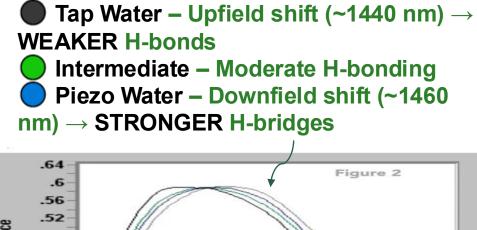
BIOLOGICAL SAMPLES

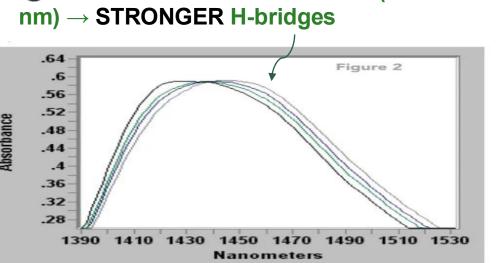
Beer and Tomatoes

Human Blood

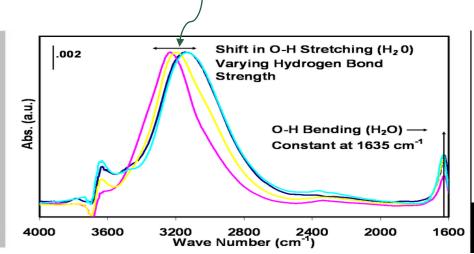
ANALYTICAL TECHNIQUES

- Biomedx 40× Phase Objective
- Sensory Analysis
- Agronomic Technique


PIEZOELECTRIC WATER TREATMENT UNIT



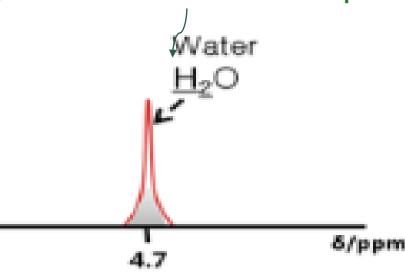
RESULTS & DISCUSSION


PHYSICOCHEMICAL EVALUATION OF TREATED VS. UNTREATED TAP WATER

FTIR SPECTROSCOPY:

Blue Curve – Peak below 3200 cm⁻¹ → downshifted → STRONGER H-bonding Pink Curve – Peak above 3200 cm⁻¹ → higher wavenumber → WEAKER H-bonding

♦ STRONGER H-bonds → sharper peaks


HDO

RMS- 1.51 (4nm) Water 65nm SiO₂ RMS- 5.26 (10nm) Water

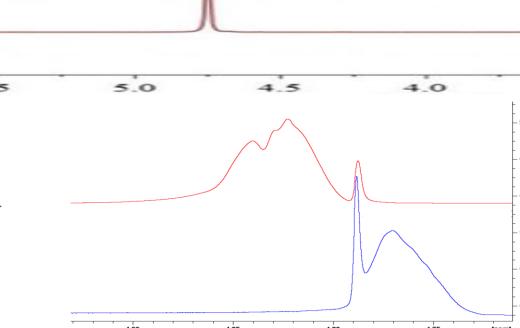
¹H NMR SPECTROSCOPY: \wedge Water peak ~4.5–5.0 ppm \rightarrow

H-bonding & proton exchange

♦ WEAKER H-bonds → broader peaks

Piezo Water: broader, downfield peak

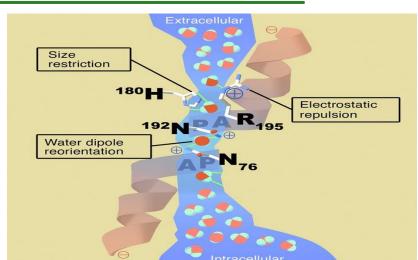
(~4.82 ppm) → STRONGER H-bonds,


Tap Water: sharper, upfield peak

(~4.78 ppm) → WEAKER H-bonds, lower

higher structural order.

organization.


WATER DENSITY AS AN INDIRECT MEASUREMENT OF HYDROGEN BOND LENGTH IN NORMAL AND PIEZOELECTRICALLY AFFECTED WATER

Property	Untreated Water	After Piezoelectric Treatment	Expected Trend
Density (g/cm³)	0.997	1.00 – 1.02	↑ Slight increase
Kinematic Viscosity (×10 ⁻⁶ m ² /s)	0.89	0.90 - 0.95	↑ Moderate increase
Dynamic Viscosity (mPa·s)	0.89	0.90 - 1.00	↑ Slight increase

BIOLOGICAL APPLICATION OF PIEZOELECTRICALLY TREATED WATER

Aquaporins: Pathways for Piezoelectrically Treated Water and Enhanced Bioavailability

Piezoelectric Treatment → reorganized hydrogen bonds → smaller water clusters \rightarrow structured water \rightarrow enhanced membrane hydration \rightarrow aquaporin activation \rightarrow increased membrane permeability → improved bioavailability.

PHYSIOLOGICAL AND HAEMATOLOGICAL EFFECTS OF PIEZOELECTRICALLY TREATED WATER: EVIDENCE FROM FOUR CASE STUDIES Using BIOMEDX 40X phase objective

CASE STUDY 1

♣ ♀ 45 y/o female, night-shift worker Before: Very fatigued after blood draw

△ After piezoelectrically treated Water: **Instant energy boost**

Next morning: Slept 8 h (vs usual 3 h)

CASE STUDY 2

 \P 40 y/o female, mother of three Fig. Health: Chronic fatigue, mold &

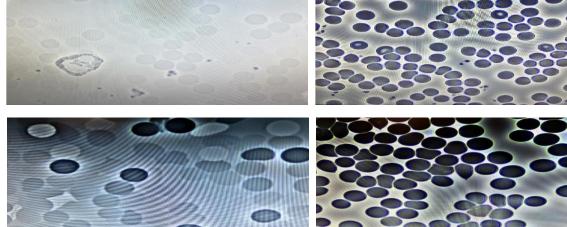
parasite exposure Status: Persistent tiredness affecting

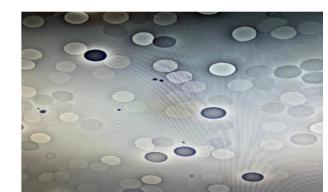
CASE STUDY (3-4)

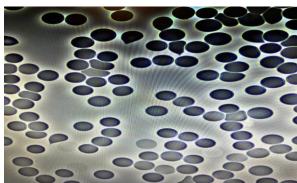
daily life and well-being

Two regular alkaline-water users **Before: Acute fatigue reported** piezoelectrically treated water

Follow-up: 3 h after intake **Observation:** Both noted a clear energy boost


RESULT: Red Blood Cell (RBC) Analysis 🍐


Before:


♦ RBC aggregation, hemolysis, low mobility, and fatigue After:

Clear separation, improved morphology, reduced hemolysis

BEFORE

SENSORY ANALYSIS OF BEER AND TOMATO CROP PERFORMANCE

BEER Sensory Analysis Results 🥟 (After piezoelectrically treated water

use in beer production) ▲ Significant differences:

- Beer Clarity Foam Quality
- Saturation

TOMATOES (After Piezoelectrically Treated Water)

lrrigation improved growth: Weight: +55.6% (84 g vs 54 g) **Girth: +15.6% (52 mm vs 45 mm)**

/ Height: +28.0% (64 mm vs 50 mm) RESULT: Enhanced tomato growth and efficiency

CONCLUSION

Piezoelectrically treated water reorganizes hydrogen bonds, forming stable molecular clusters that enhance hydration, bioavailability, and biological performance.

•RBCs: Improved morphology, mobility, and reduced aggregation → better cellular hydration and vitality

•Tomatoes: +55.6% weight, +15.6% girth, +28% height → enhanced nutrient uptake and growth efficiency

•Beer: Greater clarity, foam stability, and saturation → improved fermentation quality Results demonstrate a strong link between piezoelectrically treated water, cellular function, and product quality.

Overall, these findings highlight the potential of piezoelectric water treatment to enhance biological efficiency and food production performance, supporting further scientific investigation.

ACKNOWLEDGMENTS / REFERENCES

We thank Dr. Kosak (RMI Ltd.) for NIR measurements, Dr. Vymyslický (ANAMET Ltd.) for surface tension and density analyses, Prof. Lenka Kouřimská (CZU Prague) for contributions to the beer sensory analysis, and Dr. Tereza Kačerová (University of Oxford) for NMR expertise. Their technical support was invaluable.

Ryu H et al., Int J Mol Sci. 20 (2019) 1437. Li Z et al. Adv Energy Sustain Res. 2024; 5(5): 2300235.