

Grape Antioxidant Dietary Fibre Induces Anti-Proliferative Response in Healthy Colon via Cell Cycle Arrest

López-Oliva M.E.^{1,2}, Hernández-Martín M.^{1,2}, Rivera L.¹, Drago S.R.³, Pérez-Jiménez J.⁴, Azcutia V.^{1,2}

1-Departmental Section of Physiology. Pharmacy School. Complutense University of Madrid, 28040 Madrid, Spain; 2-Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain Institute of Food Technology; 3- CONICET, FIQ-UNL, Santa Fe, Argentina; 4-Department of Metabolism and Nutrition, Technology and Nutrition (ICTAN-CSIC), Institute of Food Science, Madrid, 28040 Spain, CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain

INTRODUCTION & AIM

- Dietary bioactive compounds are increasingly recognized for their role in regulating epithelial homeostasis and preventing abnormal cell proliferation.
- Grape Antioxidant Dietary Fiber (GADF) is a natural product that combines high amounts of dietary fiber and phenolic antioxidants obtained through a patented process from red grape pulp (*Vitis vinifera, var. Cencibel*). Previous studies have highlighted that GADF reduced mucosal apoptosis in healthy rats by modulating antioxidant enzyme systems and shifting the glutathione redox balance toward a pro-reducing environment.
- In this study, we investigated the effect of GADF on the proliferation of proximal colonic mucosal epithelium in healthy rats.

Proximal colon dissection Nuclear extract from mucosae Western blotting Immunohistochemistry analysis Approved by the Animal Care Committee of UCM (EU Directive 86/609/EFC).

Approved by the Animal Care Committee of UCM (EU Directive 86/609/EEC). Results are expressed as mean±SD; Statistical analysis was performed using Student's t-test (p < 0.05)

Funded by intramural R&D project by Universidad Complutense de Madrid, PR12/24-31551 We acknowledge the research support of Alvinesa Natural Ingredients S.L.

RESULTS & DISCUSSION

Figure 1: GADF decreased PCNA-positive cells in Lieberkühn's crypts (-30.71%, p<0,0001).

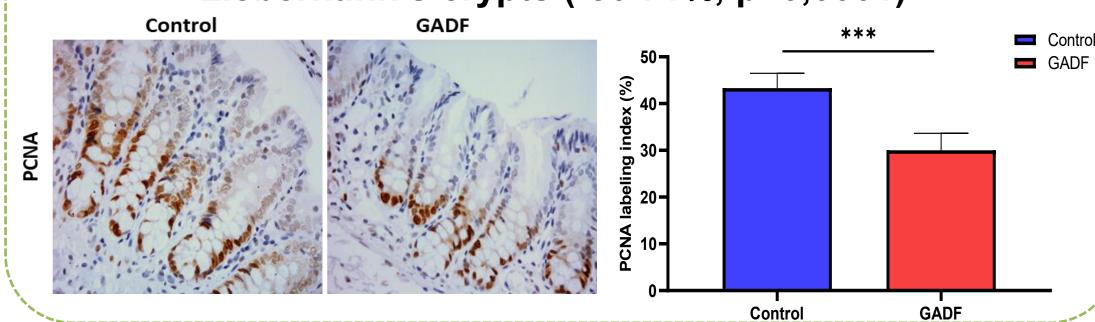


Figure 2: GADF induced the nuclear and cytoplasmic phosphorylation of p53 at Ser392 (+2306,7%, p<0,0001).

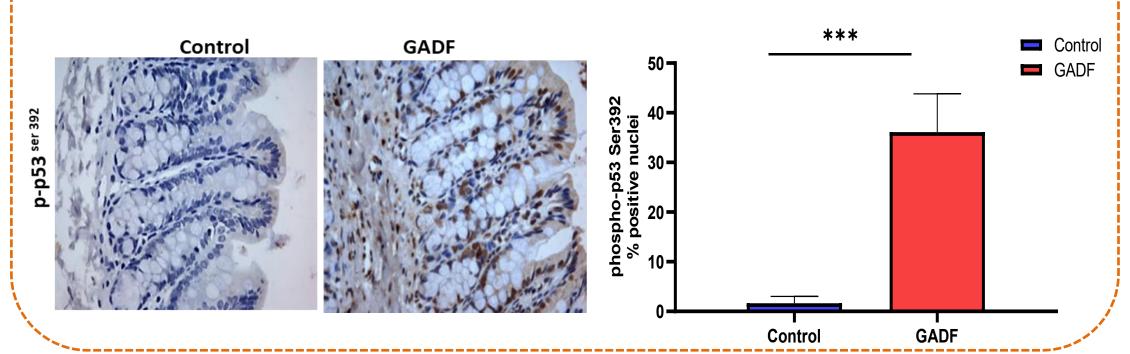
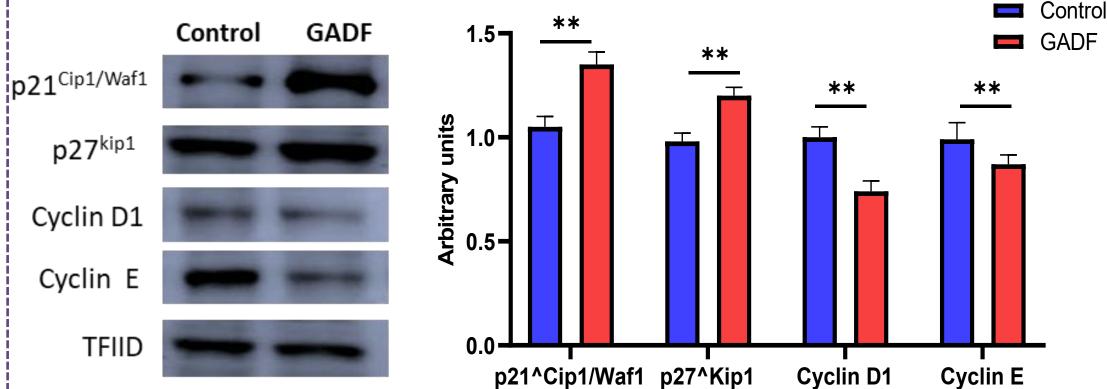



Figure 3: Cell cycle arrest was confirmed by increased levels of p21^Cip1/Waf1 and p27^Kip1, and decreased cyclin D1 and E.

- GADF upregulated the expression of the cyclin-dependent kinase inhibitors p21^Cip1/Waf1 and p27^Kip1 by 35% and 20% (p<0.001), respectively.
- GADF downregulated cyclin D1 and cyclin E by 26% and 17% (p<0.01), respectively.

CONCLUSION

GADF induces a p53-dependent G1/S cell cycle arrest, limiting epithelial proliferation and supporting its potential as a chemopreventive dietary component against early colorectal cancer risk factors.

REFERENCES

- López-Oliva et al. *Br. J, Nutr.* 2010,103:1110-1117. doi:10.1017/S0007114509992996
- López-Oliva et al. *Br. J, Nutr*. 2013,109:4-16. doi:10.1017/S000711451200051
- García-Martínez et al. Food Reviews International, 2020. 38: 402–419.
- https://doi.org/10.1080/87559129.2020.1810700
- Zhou et al. *Foods*. 2022, 7;11:2755. doi: 10.3390/foods11182755.
- Naponelli et al. *Int. J. Mol. Sci.* 2024, *25:* 5569. https://doi.org/10.3390/ijms25105569