

28-30 October 2025 | Online

Physicochemical and techno-functional properties of pumpkin seed (Cucurbita pepo var styrica) flour

Manuel Rojas¹, Marina Fernández Bravo¹, Juan José Burbano¹, María Jimena Correa¹

¹Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos - CIDCA (UNLP-CONICET-CIC). La Plata, Argentina e-mails: jburbano@exactas.unlp.edu.ar & mjcorrea@biol.unlp.edu.ar

500

27%

31%

14%

0%

8%

0%

% Daily value*

INTRODUCTION & AIM

Nutrition Facts

2.5 servings per container

Serving size 100 g (3.5 oz)

35 g

* Based on a 2000-calorie diet

Amount per serving

Calories

Total Fat

Protein 41 g

Trans Fat 0 g

Saturated Fat 6.5 g

Carbohydrate 5 g

Dietary Fiber 4.3 g

Sodium 10. 7 mg

food industry The substantial produces quantities of by-products. Within a circular economy framework, these by-products be can converted into value-added ingredients. seed flour **Pumpkin** (**PSF**) is a nutritious by-product obtained from milling the press cake remaining after pumpkin seed oil extraction.

The **aim** of this work was characterize the

techno-functional,

physicochemical, nutritional, and microstructural properties of pumpkin seed flour.

METHOD

Pumpkin seed flour (Aceites del Desierto S.R.L, Argentina). **Techno-functional properties:** water holding capacity (10% w/w suspension in water), oil **absorption capacity** (10% w/w suspension in sunflower oil), emulsion activity and thermal stability [2]. Physicochemical properties: moisture (constant weight at 60 °C, 55 mbar), water activity (25 °C), instrumental color (L*, a*, b*). Spectroscopic analysis: ATR-FTIR spectra of PSF and defatted PSF (D-PSF, defatted with hexane at a solid-to-solvent ratio of 1:5). Nutritional properties: PSF fatty acid composition using gas chromatography. Oxidative stability: by Rancimat apparatus (induction time at 140 °C). Microstructural **properties:** by confocal scanning laser microscopy [3].

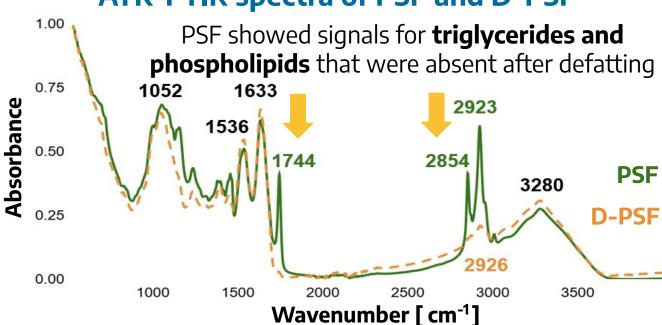
RESULTS & DISCUSSION

PSF showed low moisture content **(5.1%)** and water activity (aw= 0.523). It also demonstrated good emulsion activity (55%), high thermal stability (51%), and good water (1.14 g/g) and oil retention (0.74 g/g).

Overall, these are excellent techno-functional properties for a by-product.

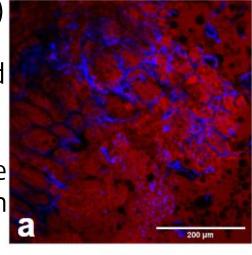
RESULTS & DISCUSSION

1.5 cm


Pumpkin seed flour

PSF exhibited an intense green color (L*: 47,6; a*: 1,1; b*: 21,6), and its use will affect the color of final products.

Fatty acids in PSF


were 18% saturated lipids and 82% unsaturated lipids. **However,** PSF showed high stability (≈10 hours at 140 °C)

ATR-FTIR spectra of PSF and D-PSF

Microstructure of PSF

Protein (in red) and **lipids** (in green) appeared highly interrelated, explaining the emulsion good properties.

Partially crushed cellular structures (in blue)

CONCLUSION

These results demonstrate the potential of **pumpkin seed** flour to be included as an ingredient in more complex matrices, which could improve its **nutritional** and technological properties. This, in turn, will contribute to the circular economy approach by valorizing this industrial **by-product** in the development of new food products.

FUTURE WORK / REFERENCES

Acknowledgments: Aceites del Desierto S.R.L. (Argentina) for providing the pumpkin seed flour. References: [1] Aceites del desierto S.R.L. 2024. [2] J. J. Burbano and M. J. Correa, Plant Foods Hum Nutr, 2021, 76, 233–239. [3] J.J. Burbano, D. M. Cabezas and M. J. Correa, Plant Foods Hum Nutr, 2024, 79, 810–818.