## The 6th International Electronic Conference on Foods

28-30 October 2025 | Online



# Wheat dry pasta enriched with aromatic herb powders: technological and textural properties

Vignola MB<sup>1</sup>, Bustos MC<sup>2</sup>, Neyra L<sup>1</sup>, Pérez GT<sup>2</sup>, Andreatta AE<sup>1</sup>

<sup>1</sup>Centro UTN – Research Group InProSus, Facultad Regional San Francisco, Universidad Tecnológica Nacional (UTN), San Francisco, Córdoba, Argentina

<sup>2</sup>Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), CONICET – Universidad Nacional de Córdoba (UNC), Córdoba, 5000,

#### **INTRODUCTION & AIM**

The incorporation of plant-based ingredients into staple foods is a growing trend aimed at enhancing their nutritional and functional properties without compromising quality. This study aimed to evaluate the effects of substituting wheat flour with basil, oregano, or rosemary powders at 2.5%, 5%, and 7.5% on the quality of dry pasta.

#### **METHOD**



Basil (Ocimum basilicum)



Oregano (Origanum vulgare)



Rosemary (Rosmarinus officinalis)

Wheat flour type 000

BPP: Basil powder pasta OPP: Oregano powder pasta RPP: Rosemary powder pasta Substitution levels: 2.5% - 5% - 7.5%

Optimal cooking time
(OTC)
Water absorption (WA)

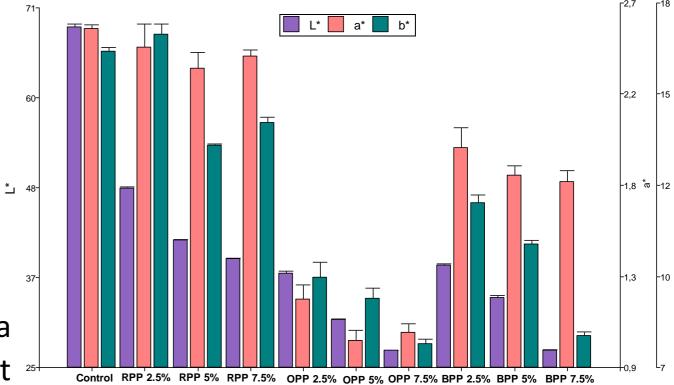
/ater absorption (WA)
Swelling index (SI)
Cooking loss (CL)

Cooked Pasta
Textural Analysis

Color of Cooked Pasta

### **CONCLUSION**

The inclusion of aromatic herb powders in pasta formulations did not significantly affect <sup>25</sup> technological quality up to 2.5% substitution. Basil-containing pastas exhibited the most favorable technological performance across all levels.


#### **RESULTS & DISCUSSION**

|         | ОСТ  | CL %    | WA (%)   | SI     | Firmness | Chewiness |
|---------|------|---------|----------|--------|----------|-----------|
| Control | 8 a  | 6.69 a  | 116.59 a | 1.81 b | 12.86 a  | 3.93 a    |
| BPP 2.5 | 7 a  | 5.49 a  | 130.56 a | 1.43 a | 28.62 c  | 11.46 d   |
| BPP 5   | 7 a  | 5.72 a  | 131.64 a | 1.55 b | 30.10 c  | 12.43 d   |
| BPP 7.5 | 6 a  | 7.15 a  | 142.71 b | 1.74 b | 27.10 c  | 11.39 d   |
| RPP 2.5 | 11 b | 6.90 a  | 157.29 b | 1.60 b | 12.19 a  | 5.92 b    |
| RPP 5   | 12 b | 8.30 b  | 165.86 b | 1.30 a | 23.82 b  | 7.84 c    |
| RPP 7.5 | 14 c | 9.44 b  | 170.21 b | 1.44 a | 13.37 a  | 4.33 a    |
| OPP 2.5 | 9 b  | 5.91 a  | 146.12 b | 1.68 b | 24.77 b  | 9.76 c    |
| OPP 5   | 10 b | 7.52 a  | 149.40 b | 1.76 b | 24.82 b  | 11.23 d   |
| OPP 7.5 | 11 b | 10.85 c | 167.46 b | 1.92 b | 23.46 b  | 8.59 c    |

CL increased only in RPP (5–7.5%) and OPP (7.5%). WA values were higher in all enriched pastas, particularly in RPP, although this did not translate into greater swelling.

SI ranged from 1.30 to 1.92, with no significant differences among most formulations highlighting that despite the higher WA reported in some formulations (attributed to their higher fiber content), the pasta did not undergo structural deformation during cooking.

BPP and OPP at all substitution levels showed higher texture values compared to the control pasta. Chewiness increased at moderate herb levels but declined at higher concentrations, likely due to disruption of the protein-starch matrix



Color analysis revealed decreased L\* and b\* values due to green pigments of herbs used. OPP7.5% was the darkest sample