

Citrus fiber-soy protein emulgels for plant-based foods: a rheological characterization and modeling

E. Bruno¹, F. R. Lupi¹, O. Mileti¹, N. Baldino¹, D. Gabriele¹

¹University of Calabria, Department D.I.M.E.S, Via P. Bucci, Cubo 39C, 87036 Rende (CS)

The authors are grateful to the project "Tech4You-Technologies for climate change adaptation and quality of life improvement", ECS 00000009, CUP H23C22000370006 for its financial support

INTRODUCTION & AIM

This work aimed at studying oil-in-water systems structured with citrus insoluble dietary fiber (IDF) and enriched with soy protein (SP), to propose rheological models and design plant-based/vegan functional foods. Emulsion gels (emulgels), chosen for their tunable texture and stability¹, were developed as model systems. Emulgels were prepared with high-pressure homogenization, fixing O/W ratio ($\phi = 0.111 \text{ w/w}$) while varying IDF and SP fraction, as a function of fiber/protein ratio (κ). Additional samples were produced by varying ϕ to propose a comprehensive rheological model. This model was then applied to design an emulgel with properties comparable to the benchmark (a spreadable cheese).

METHOD

Samples preparation

Materials:

Water phase: IDF (JRS Silvateam Ingredients srl) and SP Isolate (Bulk Powders, UK)

Oil phase: Sunflower oil (Fabiano, Italy) and soy lecithin (15% w/w, Ivovital, Germany)

- ✓ Effect of fiber and protein fraction: O/W emulgels (10/90) prepared by increasing fiber and protein (1:1 mass ratio).
- ✓ Effect of protein/fiber ratio (κ): O/W emulgels (10/90) at fixed fiber fraction (2% and 4% w/w) with variable κ .
- fixing fiber and protein concentration at 4% w/w.

homogenization

Preparation conditions:

200 bar (second stage).

high-pressure

Premixing of the sample

magnetic stirring, followed by

(Homolab 2.50, FBF Italia S.r.l.,

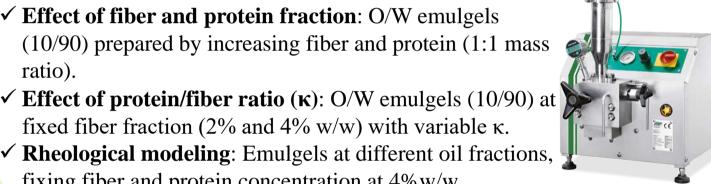
Italy) at 150 bar (first stage) and

Rheology

MCR702e, Anton Paar, PP 20 mm SAOS T=25°C, $\omega=0.1\div10$ Hz

Samples characterization

Microscopy


Cryo-SEM, Flexsem 1000 II, Hitachi, T=-30°C, low vacuum (50 Pa)

Particle size distribution

Mastersizer 2000, Malvern, (UK)

Interfacial characterization

Automated Pendant Drop Tensiometer (FTA200, First Ten Angstroms, Portsmouth, VA, USA).

RESULTS & DISCUSSION

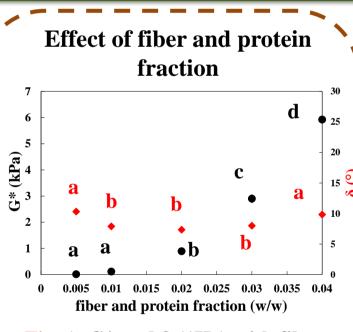


Fig. 1: G^* and δ (1Hz) with fiber and protein fraction.

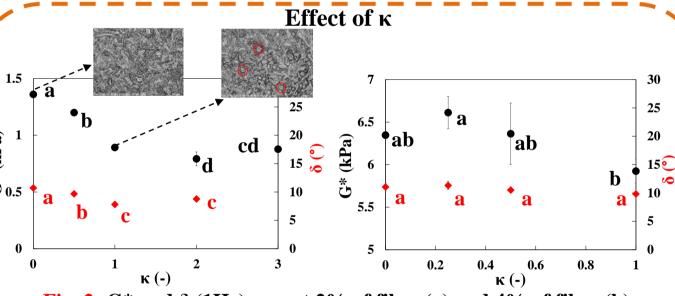
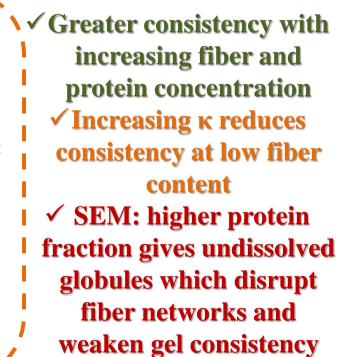
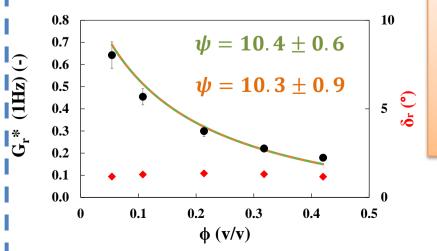



Fig. 2: G^* and δ (1Hz) vs κ at 2% of fiber (a) and 4% of fiber (b).


For both Fig. 1 and 2, different letters within the same parameter indicate significantly different values (p < 0.05).

Rheological modeling²

$$G_r = \frac{1 + 3H\phi}{1 - 2H\psi\phi}$$
 $M = \frac{G_d}{G_c}$ $(M - 1)(19M + 16) + (\frac{4\gamma}{RG_c})(5M + 2)$

 $(2M+3)(19M+16)+(\frac{40\gamma}{RG_c})(M+1)$

Fig. 3: G_r^* and δ of emulgels as a function of volumetric fraction

Interfacial tension (γ) at O/W interface under saturation conditions¹:

 $\gamma = 5.6 \pm 0.2 \, mN/m$

Droplets Radius (R) is described as a function of ϕ

 $D_{3,2} = A \cdot \Phi^b$ $A = 0.594 \pm 0.005 \,\mu m$ $b = -0.813 \pm 0.003 (-)$

Neglecting interfacial properties and assuming that the elastic modulus of particles is predominant

✓ H was included in the model both in 1 and in 2

- ✓ Both models fit well the experimental
- ✓ Eq. 2 could be more suitable, for potential use in industrial applications

CONCLUSIONS

Emulgels with $\kappa = 4.5\%$ and $\phi =$ 0.12 showed benchmark-like rheology, modeled by an industrysuitable equation, and very good nutritional properties.

And validation... Model 2 was adopted to design a light spreadable cheese, rich in fiber and protein, with rheological properties similar to Philadelphia Light

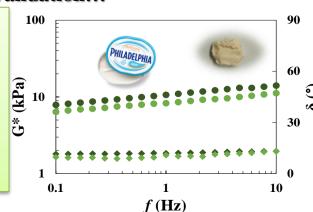


Fig. 4: G^* (circles) and δ (diamonds) of philadelphia light (dark green) and emulgel prepared for model validation (light green).

REFERENCES [1] Bruno et al. 2022. Foods, 11(23).

[2] Van Aken et al. 2015. Food Hydrocolloids, 48, 102-109