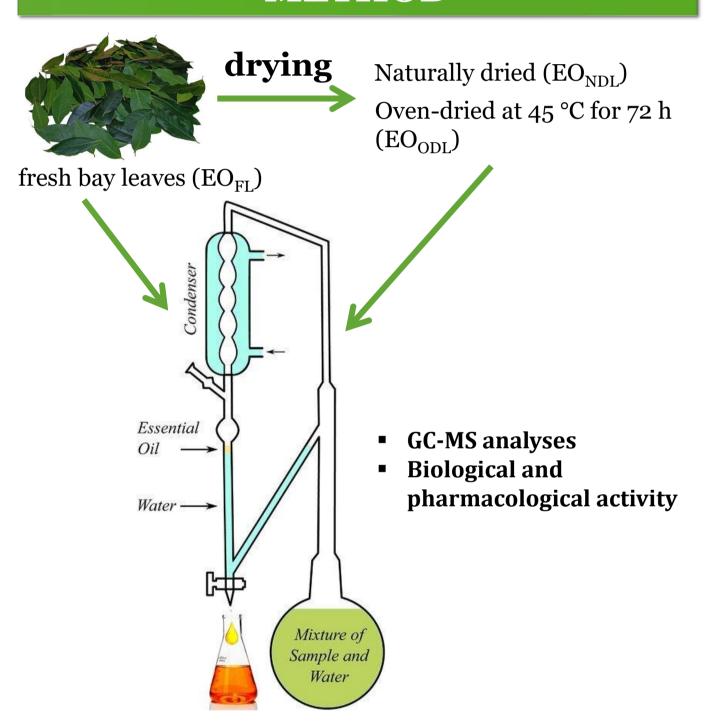
The influence of the material drying process on the chemical composition and biological activity of hydrodistilled laurel essential oil (*Laurus nobilis* L.)

Jelena D. Bajac^{1*}, Milena D. Terzić¹, Igor S. Antić¹, Gökhan Zengin², Milana Maričić¹, Branislava G. Nikolovski ¹University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia ²Science Faculty, Selcuk University, Campus Konya, 42130, Turkey

INTRODUCTION & AIM


Laurel (Laurus nobilis L.) is widely used in the culinary, food, and cosmetics industries.

Laurel essential oil (EO) exhibits:

- antimicrobial activity (antibacterial, antifungal, and antiviral);
- anti-inflammatory and analgesic activity;
- expectorant and respiratory activity (promoting clear breathing);
- antioxidant activity (helping to protect cells from oxidative stress);
- insecticidal activity (natural insect repellent).

The aim of this study was to investigate the influence of the bay leaf drying process on essential oil yield, chemical composition, and biological activity.

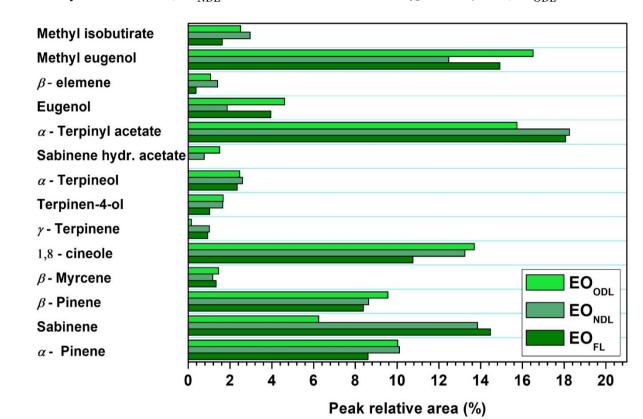
METHOD

Clevenger hydrodistillation (HD)

Ground plant material to solvent ratio=1:10

$$\text{Yield} = \frac{V_{EO} \cdot \rho_{EO}}{m_{PM}} \cdot 100 \ \left(\% \ (m/m)\right)$$

CONCLUSION


The laurel leaf drying process significantly affects the EOs yield: the highest yield was obtained from oven-dried material. The dominant components of the EOs are α -terpinyl acetate, sabinene, 1,8-cineole, methyl eugenol, and α -pinene. The best antioxidant activities were achieved with EO from oven-dried laurel leaves. The EO extracted from naturally dried material inhibited the enzymes AChE and BChE. The inhibition of tyrosinase and α -amylase was independent of the drying method used for material preparation.

RESULTS & DISCUSSION

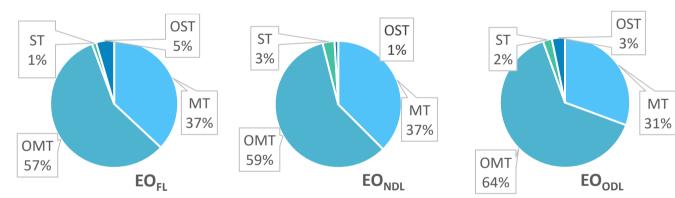


Fig. 1. Yield of laurel essential oil obtained by hydrodistillation from fresh bay leaves (EO_{FL}), naturally dried leaves (EO_{NDL}) and oven-dried leaves at 45 °C for 72 h (EO_{ODL}).

Fig. 2. The dominant compounds in laurel essential oil obtained by hydrodistillation from fresh bay leaves (EO_{FL}), naturally dried leaves (EO_{NDL}) and oven-dried leaves at 45 °C for 72 h (EO_{ODL}).

Fig. 3. Chemical composition of laurel essential oil obtained by hydrodistillation from fresh bay leaves (EO_{FL}), naturally dried leaves (EO_{NDL}) and oven-dried leaves at 45 °C for 72 h (EO_{ODL}). MT - Monoterpenes; OMT - oxidized monoterpenes; ST - sesqiterpenes; OST - oxidized sesqiterpenes.

Table 1. Antioxidant and enzyme inhibitor activity of laurel essential oil (*Laurus nobilis* L.) obtained by hydrodistillation of fresh bay leaves (EO_{FL}), naturally dried leaves (EO_{NDL}), ovendried leaves at 45 °C for 72 h (EO_{ODL}), and laurel hydrolate.

difed leaves at 45°C for /2 if (EO _{ODL}), and fauter flydrolate.						
Antioxidant	DPPH	ABTS (mg	CUPRA	C FRAP (r	ng MC (mg	PBD
assays	(mg TE/g)	TE/g)	(mg TE/	g) TE/g)	EDTA/g)	(mmolTE/g)
EO	67.0710.05	106 74 10 0	406 65 10	90 550 15 4	10 20	61.01.1.04
$\mathbf{EO}_{\mathbf{FL}}$	67.37±0.25		496.65±3.	80 759.15±4	.10 n.a	61.01±1.04
EO	(((0			(-	((-
EO_{NDL}	63.06±0.38	3 106.67±0.26	5 371.95±11.	24 504.96±0	.60 n.a	57.61±4.60
EO	60.0410.0	107091016	5 550 00 119	65 900 0110	06 20	60.0011.00
EO_{ODL}	09.34±0.02	107.28±0.16	5/3.23±16		o.6 n.a	69.09±1.03
		0 (0		9		
Laurel	51.70±2.64	89.68±1.05	210.37±2.	93 255.77±2	.38 n.a	5.55 ± 0.52
hydrolat						
Enzyme inhibitor		Ache (mg	BChE (mg	Tyrosinase	α-Amylase	α-
assays		GALAE/g)	GALAE/g)	(mg	(mmol	Glucosidase
				KAE/g)	ACAE/g)	(mmol
				787		ACAE/g)
$\mathrm{EO}_{\mathrm{FL}}$		n.a	n.a.	73.89±6.30	0.40±0.01	n.a.
EO_{NDL}		2.54±0.21	2.84±0.28	69.37±0.32	0.53±0.02	n.a.
EO_{ODL}		n.a	n.a	69.22±1.14	0.43±0.02	n.a.

1.49±0.08

13.00±2.09

 0.02 ± 0.00

1.85±0.08

Acknowledgements: This research study was supported by the Ministry of Science, Technological Development and Innovation Republic of Serbia (number: 451-03-137/2025-03/200134 and 451-03-136/2025-03/200134).

Laurel hydrolat

n.a.