28-30 October 2025 | Online

Rheological Properties and Rolling Process of Alternative Pasta Doughs

Berkay Berk, Sevcan Ünlütürk Department of Food Engineering, İzmir Institute of Technology, İzmir/Türkiye

INTRODUCTION & AIM

The growing consumer demand for healthier and more sustainable foods has promoted the reformulation of pasta using non-conventional flours (such as einkorn, spelt, whole wheat, maize, rice) and functional binding agents such as egg white, xanthan gum, and psyllium husk. These substitutions enhance nutritional quality but profoundly alter the dough's rheological and mechanical behavior, especially during mechanical deformation steps like rolling or extrusion (Romano et al., 2021; Gałkowska et al., 2021).

The viscoelastic nature of pasta dough governs its processing performance and final product texture. Small amplitude oscillatory shear (SAOS) tests describe its elastic and viscous moduli, while extensional viscosity reflects the dough's resistance to biaxial deformation—critical in sheet formation (Dobraszczyk & Morgenstern, 2003; Rouillé et al., 2005). However, translating these rheological parameters into practical indicators of processability remains a major challenge.

Mechanical parameters such as torque, power consumption, or current variation during dough processing can provide real-time information on dough structural resistance. Studies have shown that torque-based measurements correlate with rheological properties, offering a potential tool for rapid screening of novel formulations (Mitsoulis & Hatzikiriakos, 2009; Wang et al., 2024).

This study aims to bridge the gap between rheological characterization and mechanical performance by correlating viscoelastic and extensional parameters of alternative pasta doughs with torque-derived energy data during rolling.

This approach contributes to the design and optimization of pasta formulations based on real processing behavior.

METHOD

Materials

10 different formulations (see Table 1) were used with 40% hydration.

Methods

Rheological Analyses

DHR-20 Rheometer (TA Instruments, USA) with 50 mm parallel plate at 25°C.

Frequency Sweep Test

At 0.02% strain from 0.1 to 10 rad/s

Extensional Rheology Test

1.67×10⁻⁵ m/s compression speed to 50% deformation

Pasta Rolling Process

Household pasta roller (Atlas Marcato, Italy) from 5 to 2 mm thickness at 60 RPM using a digital ammeter (CEM DT-9987, China) (see Figure 1) was used to estimate the torque required. Example torque profile was depicted in Figure 2.

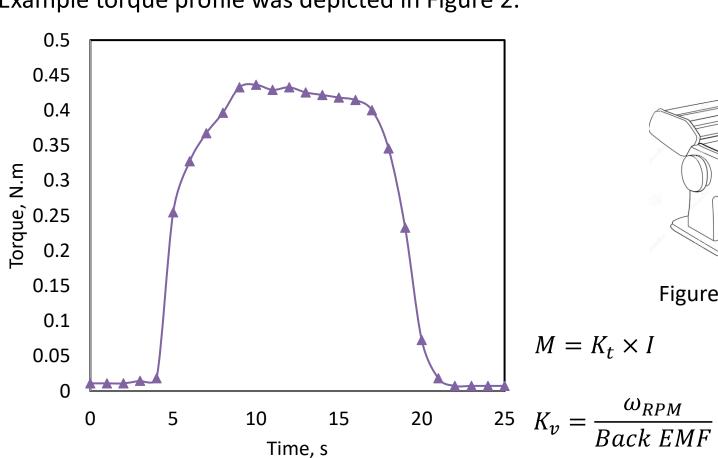


Table 1: Formulations used

Binding Agent

Egg white powder

Egg white powder

Egg white powder

Psyllium husk powder

Psyllium husk powder

Xanthan gum

Xanthan gum

No Flour Type

Spelt

Spelt

Whole wheat

Whole wheat

Einkorn

Einkorn

Maize

Maize

Rice

Rice

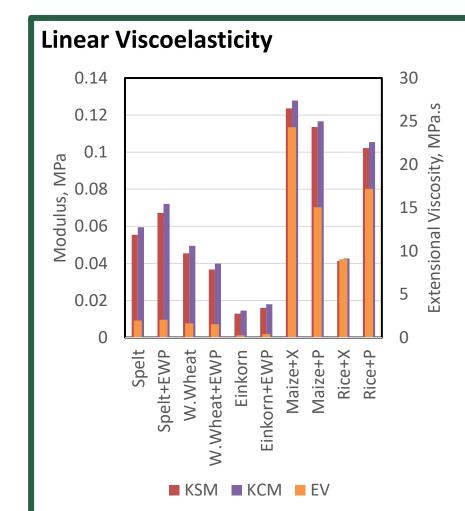
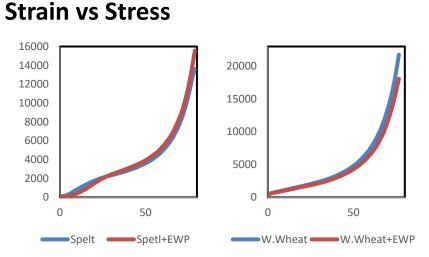
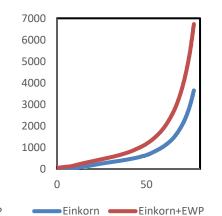
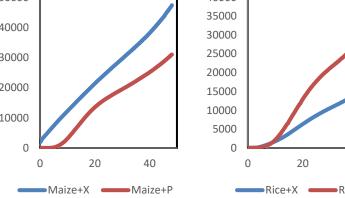

Figure 1: System used $M = K_t \times I$ $M = K_t \times I$

Figure 2: Representative torque profile


Statistical Analysis


The relation between rheological properties and energy required for dough rolling were investigated using Pearson correlation test at 95% confidence level. The analyses were conducted using Minitab software (ver.21.2, Minitab Inc., United Kingdom).


RESULTS & DISCUSSION



- Higher storage modulus consistency, complex viscosity consistency, and extensional viscosity → higher torque during rolling (Rouillé et al., 2005)
- Doughs with stronger viscoelastic structure require energy (Dobraszczyk & more mechanical Morgenstern, 2003)
- the strongest Extensional viscosity shows correlation with torque and governs sheetability (Rouillé et al., 2005)
- Doughs with lower consistency and extensional viscosity deform more easily, showing pseudoplastic behavior (Mitsoulis et al., 2009)
 - Torque measurement can serve as a practical predictor of rheological behavior during processing (Wang et al., 2024)

No effect of EWP observed

No effect of EWP observed

EWP made the dough more rigid viscoelastic

Correlation

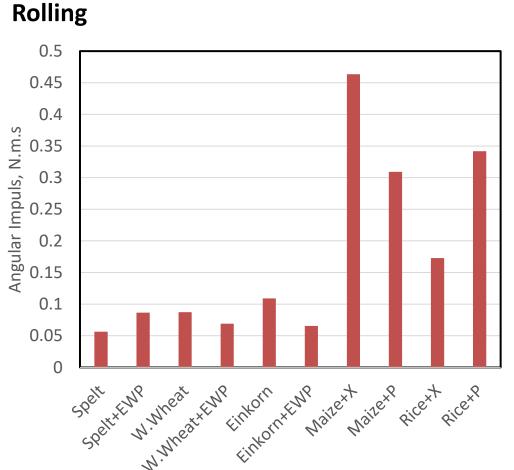
Maize+P showed Rice+P held more water \rightarrow more rigid behavior structure

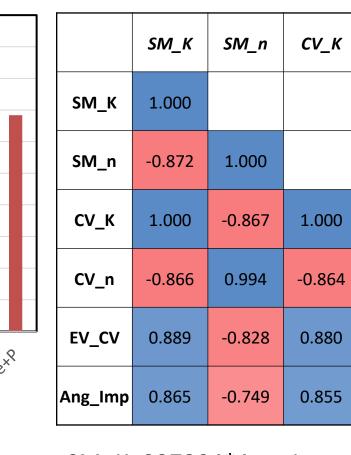
Maize+X \rightarrow Hookean solid Rice+X \rightarrow Hookean solid

CV_n

1.000

-0.782


-0.695


1.000

0.987

1.000

EV_CV Ang_Imp

More rigid dough yielded with higher energy requirement during rolling (Wang et al., 2024)

SM_K=237304*Ang_Imp+19647 CV_K=238248*Ang_Imp+22653 EV CV=5.91*10⁷*Ang_Imp+3.06*10⁶

CONCLUSION

Real-time torque measurement \rightarrow practical predictor of rheological behavior Rolling → extensional rheology predictor Rapid screening to determine suitability for pasta processing

FUTURE WORK / REFERENCES

Different types of flours and combinations will be evaluated and mathematically modeled.

