BIOSENSORS FOR THE ANALYSIS OF BIOACTIVE COMPOUNDS IN FUNCTIONAL DRINKS: EVOLVING TECHNOLOGIES AND LONG-TERM POTENTIAL

P. Barciela ¹; A. Perez-Vazquez ¹; E. Yuksek ¹; A. Silva ^{1,2}; A. G. Pereira ^{1,3}; M. F. Barroso ^{2,*}; M. A. Prieto ^{1,*}

- ¹ Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Nutrition and Food Group (NuFoG), Campus Auga, 32004 Ourense, España.
- ² REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
- ³ Investigaciones Agroalimentarias Research Group, IIS Galicia Sur (SERGAS-UVIGO), Vigo, España.

OBJECTIVES

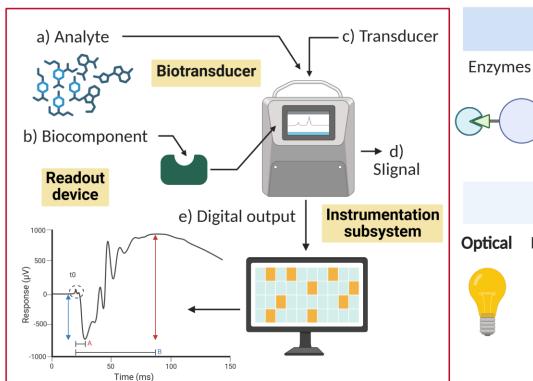
This **systematic review** aims to:

- a) Make available an overview ofbiosensing approachesapplied to FDs.
- b) Evaluate their analytical performance parameters and technological maturity.
- c) Identify future trends toward intelligent, scalable, and affordable food analysis systems

METHODOLOGY

Articles from 2017–2025 were retrieved from scientific databases using keywords such as "biosensors", "functional drinks", and "bioactive compounds".

Eligible studies include those that apply biosensors to detect BCs in drinks, excluding drink studies.


Selected papers were categorized by **BSs type**, recognition element, and analytical parameters.

Data were analyzed comparatively.

BIOSENSING APPROACHES IN FUNCTIONAL DRINKS

Biosensing is an analytical field dedicated to detecting biological indicators using transducer systems. When performing biosensing, the key parameters are detection specificity and sensitivity. Within this field, micro-analytical systems, e.g., BSs, can respond to external stimuli and translate biological interactions into quantifiable, readable signals. BSs can be divided into 1) the biotransducer; 2) the instrumentation subsystem; and 3) the readout device (Figure 3).

Their specificity arises from biological interactions such as those between enzymes and substrates, antigens and antibodies, receptors and ligands, or nucleic acids. Thus, quantitative detection of target BCs is possible even in complex matrices.

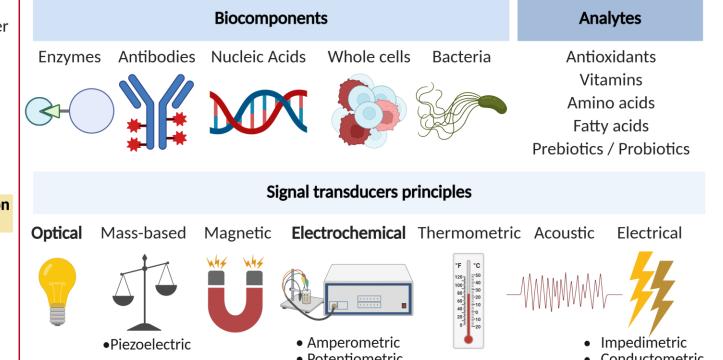


Figure 3: Overview of the architecture principles of biosensing systems for FDs.

BSs currently offer **high accuracy** by incorporating **nanomaterials** (NMs), **e.g.**, **Au** or **Ag nanoparticles**, **carbon nanotubes**, **graphene**, and **polymers** (**Figure 4**). Yet challenges remain, such as **cost**, **lengthy experimental times**, **and toxicity**. One promising approach to overcoming these limitations is the use of **electronic tongues**,

which are analytical systems that consist of arrays of chemical sensors with low selectivity and cross-sensitivity, coupled with multivariate data analysis. When connected to BS elements, they form bioelectronic tongues that use advanced algorithms to quickly and thoroughly evaluate the flavor profiles, BCs, and quality attributes of FD.

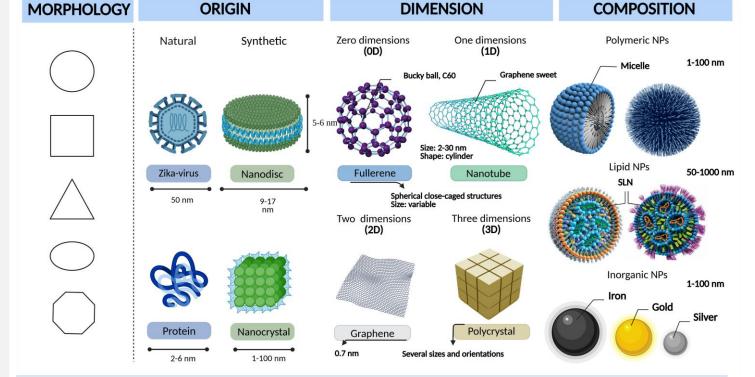
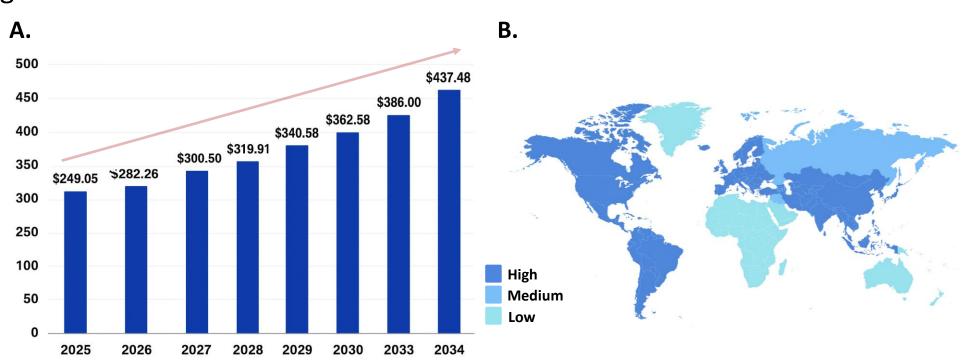


Figure 4: Characteristics and types of nanomaterials.



INTRODUCTION

• The growing consumer focus on well-being and sustainability, has fueled a significant surge in the global functional drinks (FDs) market, expected to grow at a CAGR of 6.46% from 2025 to 2034.

Figure 1: A) Functional drink market size. B) Global Beverage Market CAGR (%) by Region. **Source:** Precedence Research. (2025); Mordor Intelligence. (2025).

- FDs have emerged as a leading segment due to their ease of use, sensorial desirability, and capacity to vehicle bioactive compounds (BCs) in relevant physiological concentrations.
- Today, **R&D** lines are being focused on formulations fortified with antioxidants, essential amino acids, prebiotics, and probiotics, with synergistic benefits in the modulation of the immune system, inflammation, or cognitive health (Figure 2).

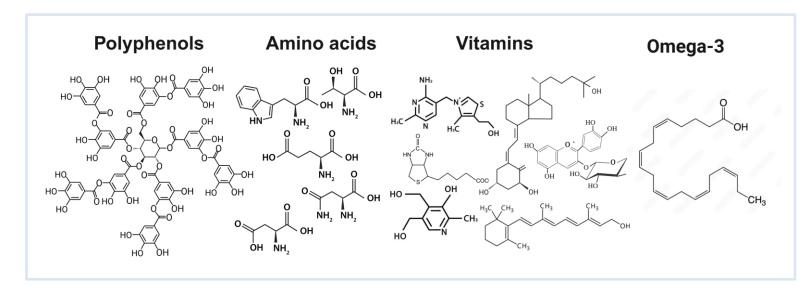


Figure 2:
Chemical
structure of
commonly used
BCs (polyphenols,
amino acids, and
vitamins) for FD
fortification.

- Quantification of BCs is a critical stage in the design, control of quality, and compliance of FDs.
- Yet, their screening involves technical hurdles given the complexity and variability of food matrices.
- Against this backdrop, biosensors (BSs) are emerging as encouraging analytical platforms.
- In particularly, electrochemical and optical BSs have proven to be effective in targeting key BCs in liquid matrices.
- The latest progress in transducers based on **nanotechnology** and **biological** recognition elements like aptamers.

FUTURE TRENDS AND RESEARCH DIRECTIONS

Biosensing trends fit into the following categorizations:

- point-of-care molecular diagnostics;
- noninvasive and implantable systems;
- lab-on-a-chip technologies;
- wearable sensors;
- health monitoring;
- artificial intelligence (AI);
- machine learning (ML).

The integration of these tools with NMs and functional nucleic acids has resulted in reduced testing costs and times, increased sensitivity and specificity, and enhanced portability. Despite these advances, the field still faces significant challenges, including the need for more robust, versatile, and cost-effective solutions.

Current discussions are focus on **optimizing** these techniques for practical applications and integrating emerging methods, like **CRISPR-based diagnostics.**

ACKNOWLEDGMENTS

The research leading to these results was supported by MICIU/AEI/10.13039/501100011033 supporting the predoctoral industrial grant for A. Perez-Vazquez (DIN2024-013416) in collaboration with Mercantia Desarrollos Alimentarios S.L; by Xunta de Galicia for supporting the post-doctoral grant of A.G. Pereira (IN606B-2024/011), and the pre-doctoral grant of P. Barciela (ED481A-2024-230). This work received financial support from portuguese national funds (FCT/MECI, Fundação para a Ciência e a Tecnologia and Ministério da Educação, Ciência e Inovação) through the project UID/50006 -Laboratório Associado para a Química Verde - Tecnologias e Processos Limpos. and also to Ibero-American Program on Science and Technology (CYTED—GENOPSYSEN, P222RT0117). Fatima Barroso (2020.03107.CEECIND) and Clara Grosso (CEECIND/03436/2020) thank FCT for the FCT Investigator grant.