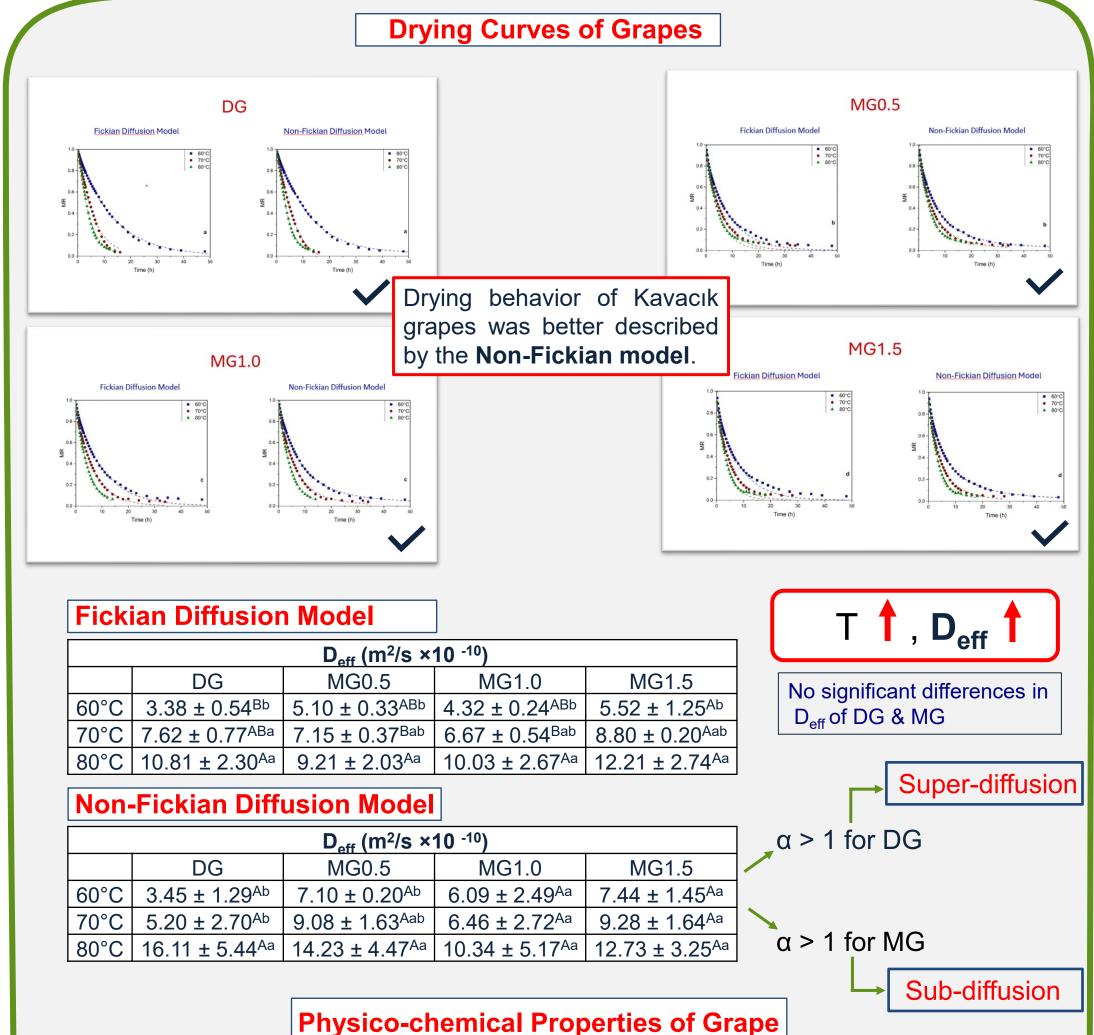

Drying Kinetics and Quality of Grapes (Vitis Vinifera L. Cv. Alphonse Lavallée): Needle Micro-perforation vs. Alkaline Treatment

Ebru Köroğlu, Berkay Berk, Sevcan Ünlütürk Department of Food Engineering, İzmir Institute of Technology, İzmir/Türkiye


INTRODUCTION & AIM

Grapes (Vitis vinifera L.) are rich in bioactive compounds such as polyphenols, flavonoids, and anthocyanins, which provide strong antioxidant and healthpromoting effects. Kavacık grape, a geographically indicated variety cultivated in İzmir, Turkey, is known for its dark color, thick skin, and high phenolic content. Due to their high moisture content, grapes are highly perishable and require preservation methods such as hot air (convective) drying, which removes moisture through heated airflow and effectively extends shelf-life. However, this method is time- and energy-consuming. Therefore, pretreatments are applied to enhance mass transfer and drying efficiency. Conventional chemical pretreatments like alkaline dipping are effective but raise environmental and safety concerns. Needle micro-perforation offers a promising physical alternative by creating micro-pores on the grape skin, facilitating moisture removal and reducing drying time. To analyze and interpret drying behavior, kinetic modeling is used to describe moisture transfer mechanisms and estimate effective diffusivity. This study investigates the effects of needle micro-perforation on the convective drying kinetics and quality of Kavacık grapes at different needle lengths (0.5, 1.0, and 1.5 mm) and temperatures (60, 70, and 80 °C), compared with conventional alkaline dipping.

METHOD

RESULTS & DISCUSSION

т \restriction

aw: significant

differences

DG)

MG0.5)

differences

& MG1.0

differences in DG

RR: no significant

pH: no significant

differences (except

TA: significant

differences in all

samples (except

ΔE : no significant

SR: significant

differences MG0.5

Temperature	a_{w}			
	DG	MG0.5	MG1.0	MG1.5
60°C	0.44 ± 0.05^{Ab}	0.40 ± 0.01^{Aa}	0.47 ± 0.08^{Aa}	0.46 ± 0.04^{Aa}
70°C	0.60 ± 0.05^{Aa}	0.39 ± 0.02^{Ba}	0.52 ± 0.08^{ABa}	0.46 ± 0.05^{Ba}
80°C	0.43 ± 0.01^{ABb}	0.38 ± 0.04^{Ba}	0.41 ± 0.01^{ABa}	0.45 ± 0.03^{Aa}
	RR			
60°C	1.29 ± 0.08^{Ba}	1.89 ± 0.15^{Aa}	2.04 ± 0.10^{Aa}	1.92 ± 0.20 ^{Aa}
70°C	1.28 ± 0.09^{Ba}	2.08 ± 0.06^{Aa}	1.96 ± 0.10^{Aa}	1.97 ± 0.05^{Aa}
80°C	1.35 ± 0.07^{Ba}	2.04 ± 0.20^{Aa}	2.08 ± 0.08^{Aa}	2.03 ± 0.11 ^{Aa}
	рН			
60°C	4.33 ± 0.02^{Ab}	4.40 ± 0.14^{Aa}	4.32 ± 0.09^{Aa}	4.42 ± 0.04^{Aa}
70°C	4.43 ± 0.08^{Aab}	4.22 ± 0.13^{Aa}	4.40 ± 0.13^{Aa}	4.34 ± 0.11 ^{Aa}
80°C	4.47 ± 0.04^{Aa}	4.34 ± 0.08^{ABa}	4.25 ± 0.08^{Ba}	4.39 ± 0.05^{ABa}
	TA			
60°C	0.70 ± 0.08^{ABab}	1.02 ± 0.30^{Aa}	0.94 ± 0.09^{ABab}	0.59 ± 0.08^{Bb}
70°C	0.64 ± 0.06^{Bb}	1.14 ± 0.26^{Aa}	0.85 ± 0.10^{ABb}	0.88 ± 0.13^{ABa}
80°C	0.83 ± 0.04^{Aa}	0.96 ± 0.41^{Aa}	1.13 ± 0.08^{Aa}	0.96 ± 0.19^{Aa}
	ΔΕ			
60°C	5.72 ± 0.64^{Aa}	4.20 ± 2.29^{Aa}	3.32 ± 2.00^{Aa}	6.95 ± 2.43^{Aa}
70°C	3.61 ± 2.20 ^{Aa}	2.95 ± 1.71 ^{Aa}	3.84 ± 0.38^{Aa}	3.23 ± 1.70^{Aa}
80°C	5.44 ± 1.20 ^{Aa}	5.16 ± 1.28 ^{Aa}	3.31 ± 1.68 ^{Aa}	6.07 ± 0.54^{Aa}
	SR			
60°C	0.83 ± 0.10^{Aa}	0.83 ± 0.06^{Aab}	0.86 ± 0.01^{Ab}	0.86 ± 0.01^{Aa}
70°C	0.81 ± 0.03^{ABa}	0.76 ± 0.03^{Bb}	0.86 ± 0.01 ^{Ab}	0.80 ± 0.02^{ABa}
80°C	1.00 ± 0.18 ^{Aa}	1.00 ± 0.13 ^{Aa}	1.02 ±0.11 ^{Aa}	0.98 ± 0.19 ^{Aa}

section's column followed by different small letters are significantly different (P< 0.05).

CONCLUSION

Needle micro-perforation proved to an efficient alternative to alkaline dipping at lower temperatures, significantly improving moisture diffusivity while maintaining the physico-chemical properties of the grapes.

