

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

QSAR-Guided Design of Ferulic-Acid Derivatives as Acetylcholinesterase Inhibitors

Łukasz Szeleszczuk^{1,*},Wiktoria Rydel², Katarzyna Mądra-Gackowska³, Jarosław Nuszkiewicz⁴ and Marcin Gackowski²

- ¹ Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, PL-02093 Warsaw, Poland;
- ² Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL-85089 Bydgoszcz, Poland
- ³ Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL-85094 Bydgoszcz, Poland;
- ⁴ Department of Medical Biology and Biochemistry, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24 Street, PL- 85092 Bydgoszcz, Poland;
- * correspondence: lukasz.szeleszczuk@wum.edu.pl

INTRODUCTION & AIM

Acetylcholinesterase (AChE) remains a validated symptomatic target in Alzheimer's disease (AD); disturbances in cholinergic signaling correlate with cognitive decline and are exploited by current AChE inhibitors [1]. Ferulic acid (FA)—a phenylpropanoid with antioxidant/neuroprotective properties—offers a safe, natural starting point, yet its potency and CNS exposure require optimisation [2]. This study aimed to build a predictive QSAR model for FA derivatives to guide structure prioritisation for AChE inhibition and early drug-design decisions.

METHOD

Compounds & bioactivity

We modelled ferulic-acid derivatives with in-vitro AChE IC_{50} measured by a (modified) Ellman assay; the set, including reference FA and donepezil, was taken from literature [3]. The series was split into training, validation, and external test subsets.

Descriptors & selection

Geometries were optimized (HyperChem), then 4,885 Dragon7 descriptors were computed; after quality filters, a reduced pool was retained, and four descriptors were selected by stepwise procedures in STATISTICA [2]. Descriptor families and their interpretability followed standard chemoinformatics principles [4–5].

Modelling and validation

Multilayer perceptrons (MLPs) were screened; the final network was an MLP 4-8-1 chosen by learning/testing/validation quality and error metrics [2]. Model performance was summarized by internal/external R², Q², and MAE according to QSAR good practice [4].

RESULTS & DISCUSSION

Model performance

The selected ANN reproduced IC_{50} values with high goodness-of-fit and predictive power; the parity plot (Figure 1) shows tight alignment of predictions with experiments, supporting low bias and robust generalization.

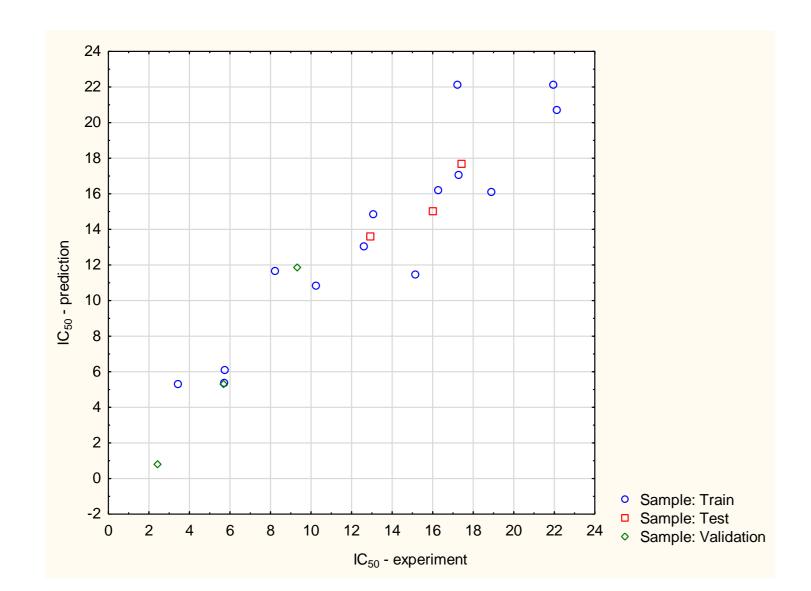


Figure 1. Predicted vs experimental IC_{50} (µM) for 20 studied analogues.

Key variables

Sensitivity analysis (Figure 2) ranked four descriptors (dataset-specific symbols): SpMax2_Bh(p), nCL, Mor16s, SpMax7_Bh(s). Their definitions connect chemical changes to potency: Burden eigenvalues (SpMax2_Bh(p), SpMax7_Bh(s)) capture polarizability/I-state-weighted electronic distribution; nCL counts chlorine atoms; Mor16s encodes 3D-MoRSE/I-state geometry [5]. These classes are widely used to relate shape/electron-distribution to bioactivity in QSAR [4–5].

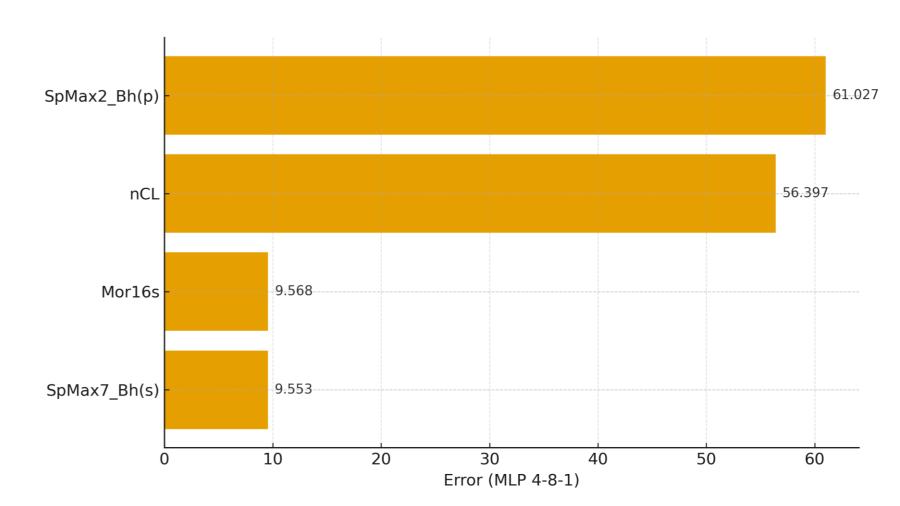


Figure 2. Descriptor importance derived from ANN sensitivity analysis.

Medicinal chemistry read-outs

The dominance of polarizability-weighted Burden terms suggests that extending π-systems and tuning substituent electronics (including judicious halogenation reflected by nCL) are productive levers—consistent with design practices and empirical AChE campaigns [6].

Design guidance synthesized from the model:

- Prioritise aryl/alkoxy patterns that increase polarizability without overshooting lipophilicity (to support BBB exposure) [2].
- Explore selective chloro-substitution (nCL) to reinforce noncovalent recognition, while monitoring CNS-relevant ADMET [6].
- Use the ANN-QSAR to triage virtual analogues before synthesis; such QSAR-guided loops have proven value across AChE discovery [6].

CONCLUSION

A compact, interpretable ANN-QSAR for ferulic-acid derivatives shows strong internal and external predictivity and highlights chemically actionable features (polarizability-rich scaffolds, selective halogenation). The model is suitable for early design and virtual screening of next FA-based AChE inhibitors.

FUTURE WORK / REFERENCES

Expand the chemical space, integrate BBB/ADMET filters upfront, and prospectively test top designs in enzyme/cellular assays to tighten the modelling loop [2].

- 1. Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of Cholinergic Signaling in Alzheimer's Disease. Molecules 2022, 27, 1816. https://doi.org/10.3390/molecules27061816.
- 2. Purushothaman, J.R.; Rizwanullah, M. Ferulic Acid: A Comprehensive Review. Cureus 2024, 16, e68063. https://doi.org/10.7759/cureus.68063.
- 3. Singh, Y.P.; et al. Design, Synthesis and Biological Evaluation of Novel Naturally-Inspired Multifunctional Molecules for the Management of Alzheimer's Disease. Eur. J. Med. Chem. 2020, 198, 112257. https://doi.org/10.1016/j.ejmech.2020.112257.
- 4. Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling; Springer: Cham, 2015. https://doi.org/10.1007/978-3-319-17281-1.
- 5. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, 2000. https://doi.org/10.1002/9783527613106.
- 6. Al-Maqtari, H.M.; et al. Benzyloxychalcone Hybrids as Prospective AChE Inhibitors: Design, In Silico ADMET, QSAR, Docking, DFT and MD Studies. ACS Omega 2024. https://doi.org/10.1021/acsomega.4c03679.