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METHOD

Acetylcholinesterase (AChE) remains a validated symptomatic target in 

Alzheimer’s disease (AD); disturbances in cholinergic signaling correlate with cognitive 

decline and are exploited by current AChE inhibitors [1]. Ferulic acid (FA)—a 

phenylpropanoid with antioxidant/neuroprotective properties—offers a safe, natural 

starting point, yet its potency and CNS exposure require optimisation [2]. This study

aimed to build a predictive QSAR model for FA derivatives to guide structure 

prioritisation for AChE inhibition and early drug-design decisions.

Compounds & bioactivity

We modelled ferulic-acid derivatives with in-vitro AChE IC50 measured by a 

(modified) Ellman assay; the set, including reference FA and donepezil, was taken from 

literature [3]. The series was split into training, validation, and external test subsets.

Descriptors & selection

Geometries were optimized (HyperChem), then 4,885 Dragon7 descriptors were 

computed; after quality filters, a reduced pool was retained, and four descriptors were 

selected by stepwise procedures in STATISTICA [2]. Descriptor families and their 

interpretability followed standard chemoinformatics principles [4–5].

Modelling and validation 

Multilayer perceptrons (MLPs) were screened; the final network was an MLP 

4-8-1 chosen by learning/testing/validation quality and error metrics [2]. Model 

performance was summarized by internal/external R², Q², and MAE according to QSAR 

good practice [4].

Model performance

The selected ANN reproduced IC50 values with high goodness-of-fit and 

predictive power; the parity plot (Figure 1) shows tight alignment of predictions with 

experiments, supporting low bias and robust generalization.

Key variables 

Sensitivity analysis (Figure 2) ranked four descriptors (dataset-specific symbols): 

SpMax2_Bh(p), nCL, Mor16s, SpMax7_Bh(s). Their definitions connect chemical 

changes to potency: Burden eigenvalues (SpMax2_Bh(p), SpMax7_Bh(s)) capture 

polarizability/I-state-weighted electronic distribution; nCL counts chlorine atoms; Mor16s 

encodes 3D-MoRSE/I-state geometry [5]. These classes are widely used to relate 

shape/electron-distribution to bioactivity in QSAR [4–5].

Figure 1. Predicted vs experimental IC₅₀ (µM) for 20 studied analogues.

Figure 2. Descriptor importance derived from ANN sensitivity analysis.

Medicinal chemistry read-outs

The dominance of polarizability-weighted Burden terms suggests that extending

π-systems and tuning substituent electronics (including judicious halogenation reflected

by nCL) are productive levers—consistent with design practices and empirical AChE

campaigns [6].

Design guidance synthesized from the model:

• Prioritise aryl/alkoxy patterns that increase polarizability without overshooting

lipophilicity (to support BBB exposure) [2].

• Explore selective chloro-substitution (nCL) to reinforce noncovalent recognition, while

monitoring CNS-relevant ADMET [6].

• Use the ANN-QSAR to triage virtual analogues before synthesis; such QSAR-guided

loops have proven value across AChE discovery [6].

A compact, interpretable ANN-QSAR for ferulic-acid derivatives shows strong 

internal and external predictivity and highlights chemically actionable features 

(polarizability-rich scaffolds, selective halogenation). The model is suitable for early 

design and virtual screening of next FA-based AChE inhibitors. 

Expand the chemical space, integrate BBB/ADMET filters upfront, and 

prospectively test top designs in enzyme/cellular assays to tighten the modelling loop 

[2].
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