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INTRODUCTION & AIM

Lysine-specific demethylase-1 (LSD1/KDM1A) removes mono- and dimethyl
marks from H3K4/H3K9 and is frequently over-expressed across tumor types, making it
an attractive epigenetic target in oncology. Curcumin, while only a weak LSD1 inhibitor,
provides a modular, low-toxicity scaffold that can be optimized by rational design. This
study aimed to build a compact, predictive QSAR model for curcumin analogues that
explains potency drivers and supports early-stage inhibitor design [1].

METHOD

Compounds and bioactivity

Nineteen curcumin analogues with recombinant LSD1 inhibitory potency (ICc)
were compiled from the literature source and used to derive plC;, for modelling; the set
was split into training (n=13), validation (n=3), and external test (n=3) subsets [2,3].

Geometry and descriptors

3-D structures were energy-minimized in HyperChem (MM+ — AM1). Dragon 7
computed 4,885 molecular descriptors; low-variance, missing-value, and high-collinearity
(r =2 0.95) filters yielded 763 variables. Stepwise selection in Statistica 13 retained four
informative descriptors: P_VSA s 5, JGI8, H2s, SpPosA_ A [4,5].

Modelling and validation

A radial-basis-function artificial neural network (RBF-ANN; 4-6-1) was trained on
the learning set and internally validated by leave-one-out (Q?); predictivity was assessed
on the external test set; error was summarized by MAE [4].

RESULTS & DISCUSSION

Model performance

The final RBF-ANN reproduced experimental potency with excellent fit and
internal consistency (R? = 0.999; Q% = 0.9996; MAE = 0.11 log units) and showed strong
external predictivity (R? test = 0.928). The parity plot (Figure 1) illustrates tight
agreement between predicted and experimental plC, across training, validation, and
test subsets.
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Figure 1. Predicted vs experimental pICs, (MM) for 19 studied analogues.
Descriptor importance

Sensitivity analysis (Figure 2) ranked the four variables as follows: P_VSA s 5
> JGI8 > H2s = SpPosA _A. P_VSA s 5 (polar van-der-Waals surface area in specific
atomic states) dominated the response, indicating that enlarging and appropriately
positioning polar surface enhances LSD1 engagement. JGI8 (8th-order mean topological
charge) captured long-range charge-distribution patterns consistent with electrostatic
complementarity. H2s (hydrogen-attached atom Sanderson electronegativity) and
SpPosA A (sum of atomic positive fragment surface areas) added finer-grained
electronic/fragment-surface detail [5].
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Figure 2. Descriptor importance derived from ANN sensitivity analysis.

Medicinal chemistry read-outs
The model supports three practical levers:

« tune polar surface via hydroxyl/alkoxy substitutions within the curcuminoid
framework to increase P_VSA s 5 without overshooting lipophilicity;

« modulate charge topology (JGI8) through electron-withdrawing/-donating patterns
and strategic halogenation reported in the source series;

e preserve conjugation and H-bond capacity to maintain favourable H2s/SpPosA_A
balance.

These trends are consistent with LSD1-ligand recognition principles and general QSAR
guidance [2,4,5].

CONCLUSION

A concise, interpretable RBF-ANN QSAR model for curcumin analogues
accurately reproduces LSD1 inhibition and yields actionable design rules centred on
polar surface control and charge topology. The model is suitable for rapid triage of
virtual analogues prior to synthesis.
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Expand the chemical series, integrate CNS-relevant ADMET filters and
permeability models, and prospectively validate top QSAR-prioritised analogues in
enzyme and cellular assays [4].
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