

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

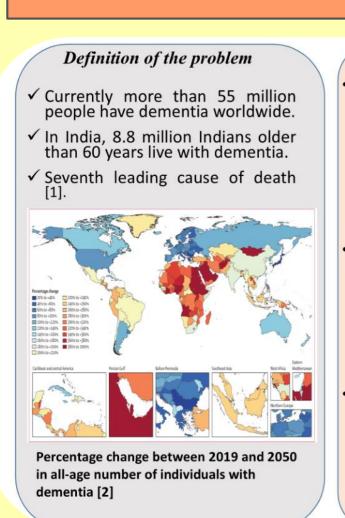
01-30 November 2025 | Online

Targeting Neuroinflammation and Tau/APP Pathology via Intranasal Delivery of Azilsartan Medoxomil Nanoemulgel in AlCl3-induced Alzheimer's Dementia Model

Varnita Karmakar, Bapi Gorain*

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, **Jharkhand**

Abstract

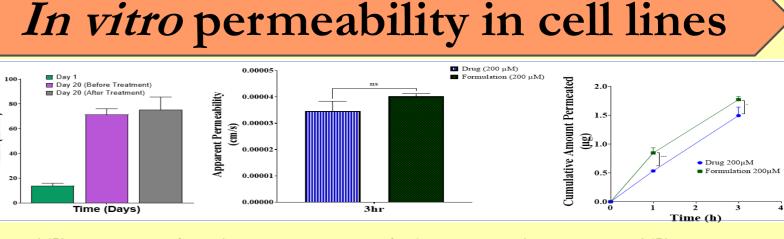

Email ID: bapi.gorain@bitmesra.ac.in

Background: Cognitive impairment and dementia have become a global burden, distressing millions of elderlies, accounting for progressive loss of neurons in the brain affecting higher multiple cortical centers, and impacting social life. The renin-angiotensin system and its receptors, widely distributed within the brain, offer potential to treat dementia via diminishing oxidative stress, neuronal inflammation, and increasing blood-brain barrier (BBB) integrity. The present study delves into the formulation and optimization of thermoresponsive azilsartan medoxomil (AZL-M) loaded in situ nanoemulgel for targeted nose-to-brain delivery to the brain due to low BBB permeability and validated through in vivo models.

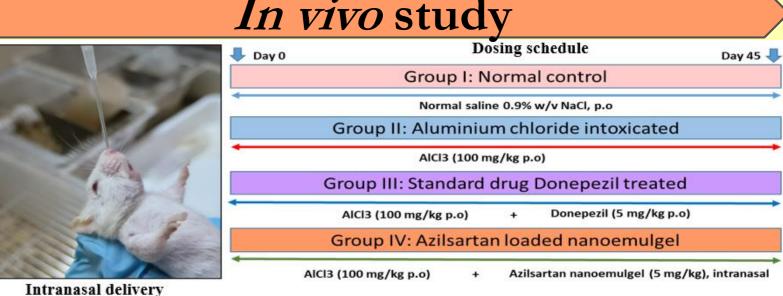
Methods: A Box-Behnken design was used to optimize formulation parameters such as droplet size, gelation temperature, and drug release. The optimized nanoemulgel was characterized for physicochemical properties and evaluated for ex-vivo nasal mucosal toxicity, in-vitro cytotoxicity, and ROS reduction. In-vivo efficacy of intranasal application of the optimized formulation was assessed in an AlCl₃-induced Alzheimer's model. Results: Formulation-F20 showed optimal gelation at 33.4°C, pH-6.21, droplet size of 160nm, 60.4% drug release in 8h, high permeation, and flux, with confirmed safety and cell viability. TEER studies confirmed the integrity of RPMI-2650

monolayers, and while apparent permeability values of AZL-M solution and nanoemulgel were comparable, the nanoemulgel exhibited significantly higher cumulative permeation across the nasal epithelial barrier. In-vivo studies showed that nanoemulgel significantly improved cognitive performance and neuronal survival. At the molecular level, AZL-M treatment led to a marked reduction in brain inflammatory cytokines TNF-α and IL-1β, along with downregulation of Alzheimer's-specific markers including phosphorylated tau, amyloid precursor protein, and NF-κB. Simultaneously, a significant upregulation of brain-derived neurotrophic factors indicated enhanced neurotrophic support and synaptic plasticity. Conclusion: The intranasally delivered AZL-M-loaded nanoemulgel showed potential as a safe and effective therapy for Alzheimer's dementia by attenuating neuroinflammation and Alzheimer's pathology markers.

Introduction

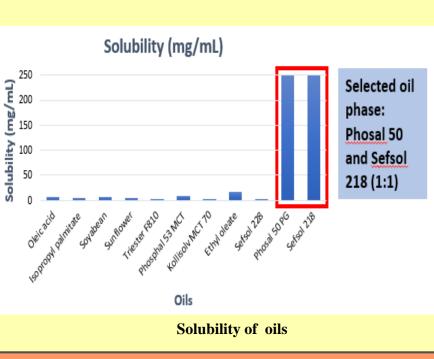

Knowledge gap Addressing memory decline in dementia and neurodegenerative diseases comes with limited medications and increased toxicity profile. receptor

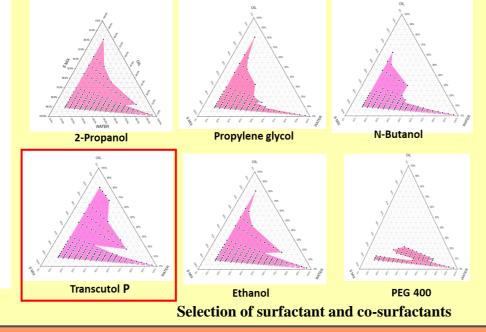
Angiotensin blockers offers potent neuroprotective activity, poor bioavailability and blood-brain barrier penetration [3, 4]. Direct delivery of ARBs suitable formulation to improve efficacy and evaluate decline

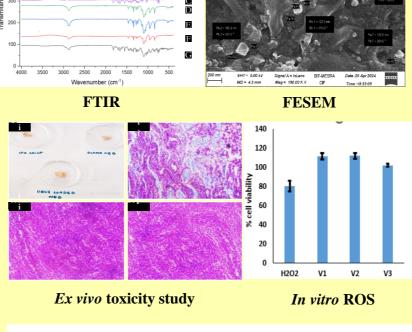

Issues to be addressed Development of nanoemulsion based in situ gel ✓ Delivering azilsartan, a non BBB permeable drug, directly to the brain through nose to ✓ Assessment of behavioural and biochemical. markers for treatment of dementia.

Nose-to-brain transportation pathways [5]

Characterization

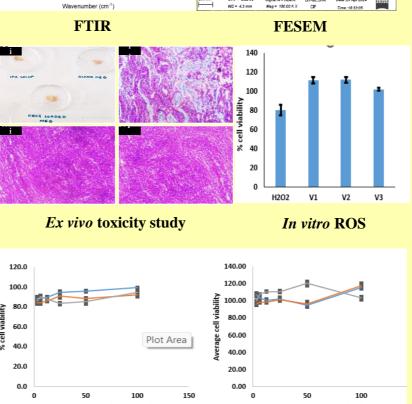


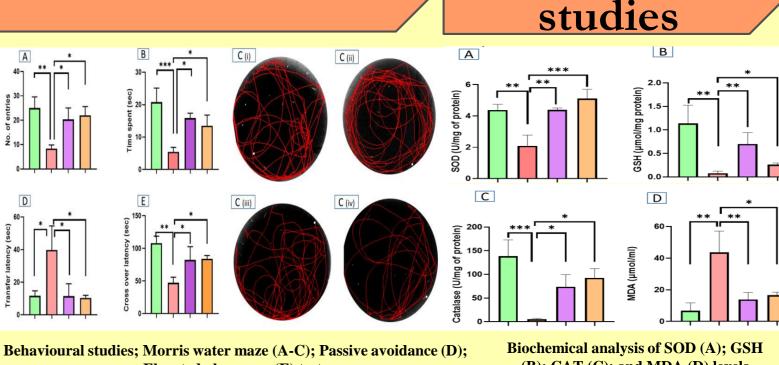

RPMI-2650 cell monolayers formation, TEER measurement for AZL-M permeation across RPMI-2650 cell monolayer



Pre-formulation studies

Quality by design approach (QbD)

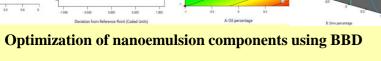




In vitro release and ex-vivo permeation of

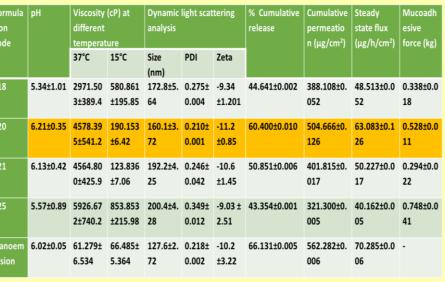
different optimized gels

Behavioural studies

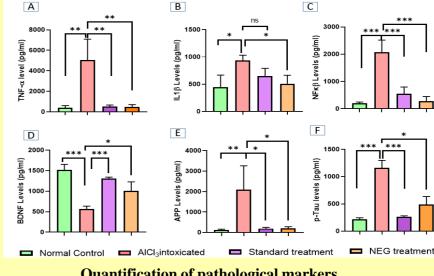

Elevated plus maze (E) tests

(B); CAT (C); and MDA (D) levels from brain tissue homogenates

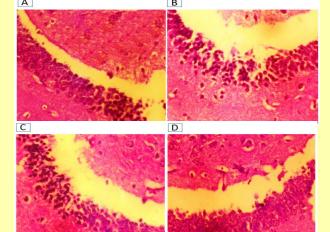
Biomarker studies


Histopathologica 1 studies

Biochemical


Particle size, PDI, and Zeta potential

2021:62:102-141



In vitro cytotoxicity study

Selection of best suited in situ nanoemulgel based on all characterization parameters

Quantification of pathological markers TNF- α (A); IL-1 β (B); NF- $\kappa\beta$ (C); BDNF (D); APP (E); p-Tau (F)

Histopathological studies with 20x (A-D) magnification in different groups; control (A), disease (B), test (C), and standard (D)

Conclusion

✓ The study demonstrates that thermoresponsive in situ nanoemulgel mediated nose-to-brain delivery of azilsartan significantly attenuates memory decline in experimental animals. Behavioral assessments, biochemical and specific biomarkers parameters confirm the neuroprotective efficacy of this delivery method, highlighting its potential as a promising therapeutic approach for neurodegenerative diseases and dementia.

References

Organisation, 2023. Dementia. Availaible 2. Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allad F et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet. Karmakar V, Gorain B. Potential molecular pathways of angiotensin receptor blockers in the brain toward cognitive improvement in dementia. Drug Discovery Today. 2024;29(1):103850.

Chin LY, Tan JY, Choudhury H, Pandey M, Sisinthy SP, Gorain B. Development and optimization of chitosan coated nanoemulgel of telmisartan for intranasal delivery: A comparative study. Journal of Drug Delivery Science and Technology.

Ghosh A, Majie A, Karmakar V, Chatterjee K, Chakraborty S, Pandey M, Jain N, Roy Sarkar S, Nair AB, Gorain B. In-depth Mechanism, Challenges, and Opportunities of Delivering Therapeutics in Brain Using Intranasal Route. AAPS PharmSciTech. 2024 May 6;25(5):96.

Acknowledgement

