

# The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics



01-30 November 2025 | Online

## From CCD to ANN: A Hybrid Statistical-Computational Framework for Optimization of Doxylamine Succinate Orally Disintegrating Tablets

Salman Ashfaq Ahmad<sup>1,2</sup>, Syed Muhammad Farid Hasan<sup>2</sup>

<sup>1</sup> Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan <sup>2</sup> Faculty of Pharmacy, Iqra University, Karachi 75850, Pakistan

#### **INTRODUCTION & AIM**

Central Composite Design (CCD) is a popular statistical method for pharmaceutical formulation process optimisation. It is part of the Response Surface Methodology (RSM) used to implement Quality by Design (QbD). It is used to study how various variables affect a response. Because it models complex systems using linear and nonlinear effects. CCD is effective at finding optimal conditions for medication formulation and manufacturing  $^{1,2}$ . Researchers in formulation development use neural networks because they can mimic brain function to memorise by experience. Despite poor or partial data, an Artificial Neural Network (ANN) makes decisions and draws conclusions for numerical and non-numerical computations. ANN is a more powerful and adaptable tool for multi-variable simultaneous optimisation of pharmaceutical formulations than Response Surface Methodology. Most pharmaceutical applications use the multi-layer perceptron (MLP) network. Input and output layers of MLP have processing units, known as nodes. One or more hidden layers link the nodes. The input and output layers have as many nodes as independent and dependent variables. The input layer receives external data, the hidden layer processes it, and the output layer outputs it 3. Development of orally disintegrating tablets (ODTs) has improved patient compliance and adherence. For instance, improved bioavailability, enhanced stability, and immediate onset of action make them superior in specific patient types and conditions 4. Doxylamine Succinate is known for its various pharmacological effects. It competitively antagonizes the H<sub>1</sub>-receptors, situated in multiple locations in human body. Owing to its sedating effect, the drug is used for the short-term treatment of insomnia. Moreover, owing to its anti-emetic action, it is also utilized for morning sickness (a condition during pregnancy) 4. Quality by Design is a risk-based methodology used by pharmaceutical manufacturers to ensure product quality. CCD and ANN both are used for the implementation of QbD. In this study, these two QbD techniques were employed to model the relationship between input and output variables. These tools were applied to optimise the development of Doxylamine Succinate ODTs via direct compression, creating a robust, adaptable methodology that aligns with ICH guidelines (Q8, Q9, Q11, Q19) <sup>5</sup>.

#### **METHOD**

**MATERIALS USED IN ODT FORMULATION:** The formulation development included the use of Doxylamine Succinate (drug), Povidone, Crospovidone, Avicel PH 102, Sodium Saccharin, Mannitol, Aerosil, and Magnesium Stearate.

**PREPARATION OF FORMULATION BLENDS:** The ODT formulation of Doxylamine Succinate were developed using CCD approach. The approach was applied using the Design Expert® 13 (Stat Ease, Inc., Minneapolis MN 55413, USA). A rotatable CCD was applied with five center points and  $\alpha$  value of 1.41421. The concentration of binder (Povidone) and superdisintegrant (Crospovidone) were used as the independent variables. Tablet friability, wetting time, and disintegration time were taken as the dependent variables (responses). The design proposed 13 formulations (F1-F13). All formulation ingredients were mixed, and the resulting formulation blends of Doxylamine Succinate ODT were directly compressed.

The compressed tablets were evaluated for their pre and post compression characteristics.

PRE & POST COMPRESSION PARAMETERS: Bulk density, tapped density, compressibility index, and Hausner's ratio were the pre-compression parameters. Weight variation, friability, hardness, thickness, wetting time, water absorption ratio, in vitro disintegration, and drug release (dissolution) were evaluated as the post compression tests.

**DRUG RELEASE ASSESSMENT:** Dissolution test was performed in an acidic medium (0.01N Hydrochloric Acid). The stock and sample solution were prepared, and calibration curve was constructed. All proposed formulations were assessed for their drug release.

**ANN MODELING:** The current study involved training and validating an ANN model utilising MLP to develop and optimise Doxylamine Succinate ODT. ANN modeling was performed using JMP® Pro 18 software (SAS Institute Inc., North Carolina, USA). The output responses of the CCD were used to train the ANN model.

**TRAINING AND VALIDATION OF ANN MODEL:** These output responses (dependent variables), which included wetting time, water absorption ratio, and in vitro disintegration, were labelled  $Y_1$  to  $Y_3$ , respectively. Data training and testing were conducted using the Holdback input randomizing technique at a 70/30 (training/testing) ratio. After that, the tested formulations were cross-checked using the Central Composite Design (CCD).

**NEURAL NODE SELECTION:** The optimal number of nodes was determined with the trial-and-error method. By utilizing TanH (Tangent Hyperbolic) as an activation function, the nodes were tested in the range of 3 to 10. The node with the highest  $r^2$  and minimum SSE (sum of square errors) value for each of the responses  $(Y_1-Y_3)$  was chosen as the optimum value for the simulated formulation.

**SIMILARITY FACTOR TEST:** The compressed ANN-optimized formulation was evaluated for the drug release through the in vitro dissolution test. The drug release profile of the ANN optimised formulation was compared with the CCD optimised formulation. The comparison was made through a model-independent approach, the similarity factor test ( $f_2$  test). The similarity factor test was applied through DD Solver (Microsoft Excel® add-in program). Based on the results of the  $f_2$  test, the presence or absence of similarity between the ANN and CCD-optimised formulations was determined.

#### **RESULTS & DISCUSSION**

All the CCD proposed Crospovidone formulations passed the pre and post compression tests. Among the 13 formulations, F7 formulation gave the best results with a highest drug release. The results of the optimized formulation are presented in **Table 1 and 2**. A higher water absorption ratio was linked to a shorter wetting time and faster disintegration. This ratio is a key measure of a disintegrant's capacity to swell upon contact with water, a process that directly facilitates drug dissolution.

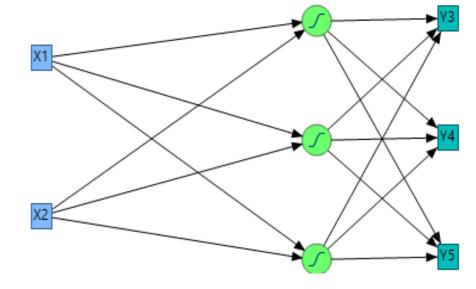
**Table 1:** Pre-compression results for F7 formulation

| PRE-COMPRESSION PARAMETERS |                   |              |                    |  |  |  |
|----------------------------|-------------------|--------------|--------------------|--|--|--|
| Bulk Density               | Tapped<br>Density | Carr's Index | Hausner's<br>Ratio |  |  |  |
| 0.387 g/ml                 | 0.441 g/ ml       | 12.284 %     | 1.140              |  |  |  |

The CCD suggested that Crospovidone has high influence in decreasing the formulation's disintegration time and wetting time. The presence of Povidone demonstrated no significant impact, highlighting its ineffective action on disintegration and wetting time.

**Table 2:** Post-compression results for F7 formulation

| POST- COMPRESSION PARAMETERS |               |  |  |  |
|------------------------------|---------------|--|--|--|
| Hardness                     | 3.5 N         |  |  |  |
| Thickness                    | 3.7 mm        |  |  |  |
| Diameter                     | 5.90 mm       |  |  |  |
| Friability                   | 0.67%         |  |  |  |
| Weight Variation             | Passes        |  |  |  |
| Wetting Time                 | 9.89 seconds  |  |  |  |
| Water Absorption Ratio       | 101.5         |  |  |  |
| In vitro Disintegration      | 27.00 seconds |  |  |  |
| In vitro Dissolution         | 100.76%       |  |  |  |


Previous research findings compared the disintegration strength of Crsopovidone with other superdisintegrants. Crospovidone showed the highest efficiency <sup>6</sup>.

Artificial Neural Network is used in the current study for optimization of Doxylamine Succinate ODT. ANN has been utilized as a predictive and optimisation tool in past to develop a pH-dependent Mesalamine matrix tablet targeted for colonic delivery <sup>7</sup>. As the performance of the ANN model is directly related to the selection of the optimal number of nodes, therefore, the model was trained using the Random Holback method, with TanH values ranging from 3 to 10. The values recorded in **Table 3** revealed that node value 5 (highlighted in blue) is the best activation node for formulations containing Crospovidone. **Figure 1** showed the input layers connected with the responses in the output layer in an ANN model. Between these were the hidden layers of nodes.

Table 3: Selection of optimal node value

| Nodes          | Generalized r <sup>2</sup> r <sup>2</sup> , SSE |                  |                |                |
|----------------|-------------------------------------------------|------------------|----------------|----------------|
|                | (Training)                                      | $\mathbf{Y}_{1}$ | Y <sub>2</sub> | $\mathbf{Y}_3$ |
| 3              | 0.998                                           | 0.859, 0.232     | 0.328, 0.416   | 0.832, 0.441   |
| 4              | 0.988                                           | 0.812, 0.309     | 0.104, 0.555   | 0.790, 0.551   |
| 5 <sup>a</sup> | 1.000                                           | 0.979, 0.034     | 0.449, 0.341   | 1.000, 0.000   |
| 6              | 0.989                                           | 0.813, 0.308     | 0.104, 0.554   | 0.792, 0.544   |
| 7              | 0.997                                           | 0.835, 0.272     | 0.181, 0.507   | 0.814, 0.487   |
| 8              | 0.987                                           | 0.814, 0.306     | 0.103, 0.556   | 0.790, 0.550   |
| 9              | 0.984                                           | 0.812, 0.310     | 0.098, 0.558   | 0.792, 0.545   |
| 10             | 0.987                                           | 0.814, 0.305     | 0.102, 0.556   | 0.793, 0.544   |

Figure 1: MLP architecture



Prediction profiler proposed an optimized formulation which was compressed, and dissolution studies were performed. Similarity factor test was performed on CCD and ANN proposed formulation and a  $\rm f_2$  value above 50 indicated similarity between two formulations. A comparison between the CCD and ANN optimized formulations has been performed in different formulation development research. Khan et al (2023) used one-way ANOVA to analyze the percentage drug release variance between ANN and CCD optimized Moxifloxacin ODTs  $^3$ . The results revealed no statistically significant difference. Another group of researchers who formulated Pyrazinamide ODTs tablets used one-way ANOVA to compare ANN and CCD optimized formulations. The comparison revealed no statistical difference between the two formulations  $^8$ .

#### CONCLUSION

The integration of Central Composite Design and Artificial Neural Network provided a robust hybrid framework for the optimisation of Doxylamine Succinate orally disintegrating tablets. The ANN-predicted formulation demonstrated comparable performance to the CCD-optimized formulation, confirming the reliability of both models. This study highlights that ANN can serve as a powerful complementary tool to traditional statistical designs for multivariable optimization in pharmaceutical formulation development.

### FUTURE WORK / REFERENCES

1. Hassan H, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Central Composite Design for Formulation and Optimization of Solid Lipid Nanoparticles to Enhance Oral Bioavailability of Acyclovir. Molecules. 2021;26:5432.

2. Singh G, Pai RS, Devi VK. Response surface methodology and process optimization of sustained release pellets using Taguchi orthogonal array design and central composite design. Journal of Advanced Pharmaceutical Technology & Research. 2012;3:30-40.

3. Khan, M. Z., Yousuf, R. I., Shoaib, M. H., Ahmed, F. R., Saleem, M. T., Siddiqui, F., & Rizvi, S. A. (2023). A hybrid framework of artificial intelligence-based neural network model (ANN) and central composite design (CCD) in quality by design formulation development of orodispersible moxifloxacin tablets: physicochemical evaluation, compaction analysis, and its in-silico PBPK modeling. Journal of Drug Delivery Science and Technology, 82, 104323.

4. Ahmad, S. A., Hasan, S. M. F., Bafail, D., Shah, S. F., Imran, M., Sahar, T., & Ishaqui, A. A. (2024). Assessing disintegration effectiveness: A thorough evaluation using the SeDeM-ODT expert system for doxylamine succinate orodispersible formulation. Plos one, 19(9), e0310334.

5. A.G. Mirani, S.P. Patankar, V.J. Kadam, Risk-based approach for systematic development of gastroretentive drug delivery system, Drug Deliv Transl Res 6 (2016) 579–596
6. Sutthapitaksakul, L., Thanawuth, K., Huanbutta, K., & Sriamornsak, P. (2022). Effect of a superdisintegrant on disintegration of orally disintegrating tablets determined by simulated wetting test and in vitrodisintegration test. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 77(10), 287-290.

7. Khan, A. M., Hanif, M., Bukhari, N. I., Shamim, R., Rasool, F., Rasul, S., & Shafique, S. (2020). Artificial neural network (ANN) approach to predict an optimized pH-dependent mesalamine matrix tablet. Drug design, development and therapy, 2435-2448.

8. Matawo, N., Adeleke, O. A., & Wesley-Smith, J. (2020). Optimal design, characterization and preliminary safety evaluation of an edible orodispersible formulation for pediatric tuberculosis pharmacotherapy. International Journal of Molecular Sciences, 21(16), 5714.