

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Development of a cell-based platform for expression of antimicrobial peptides: modification of HEK-293T cells for expression and extracellular secretion of human β-defensin 1

O.O. Klychkova, M.P. Markina, A.A. Lee, D.A. Kashirskikh, V.A. Khotina, V.A. Gasanov Koltzov Institute of Developmental Biology of Russian Academy of Sciences

INTRODUCTION & AIM

Antibiotic resistance is recognized as a major public health threat. Antimicrobial peptides provide an alternative to antibiotics. Human β -defensin 1 (hBD1), produced by epithelial cells, demonstrates broad antimicrobial activity and retains stability after proteolysis. However, its clinical application is constrained by high synthesis costs.

This study aimed to generate a eukaryotic cell platform for hBD1 expression and secretion.

METHOD

Plasmids pHBD1-Out and pHBD1RFP-Out were designed using the pcDNA3.1(+) vector with the CMV promoter. Cloning was performed in *E. coli* XL1-Blue, followed by plasmid purification and restriction analysis. HEK-293T cells were transfected via lipofection. Transfection efficiency was evaluated after 48 h by fluorescence microscopy. hBD1 production was confirmed by PAGE and HPLC. Antimicrobial activity was assessed against E. coli using agar diffusion assay.

RESULTS & DISCUSSION

The pHBD1-Out plasmid carried the hBD1 sequence and the SRP9 signal peptide for extracellular expression, while pHBD1RFP-Out additionally contained A2P peptide and RFP marker (Fig. 1).

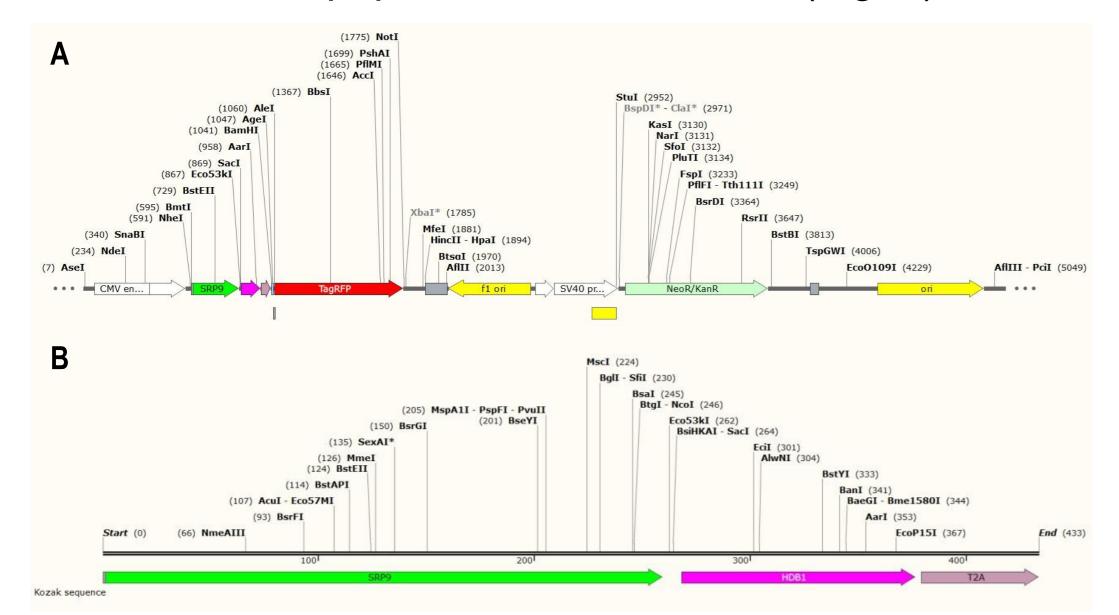
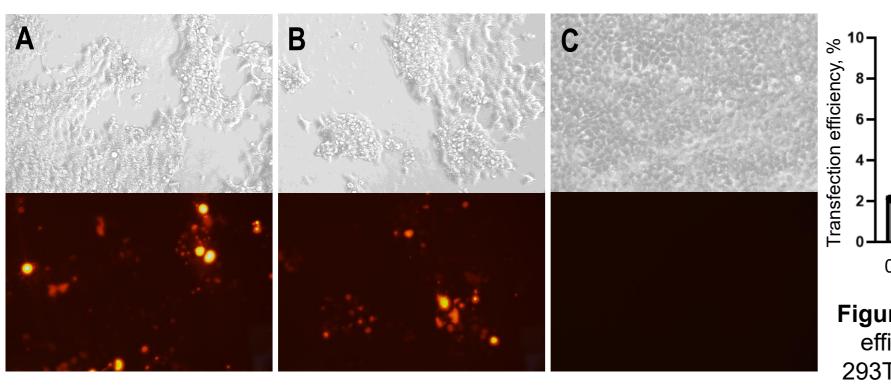



Figure 1. Plasmid maps of pHDB1-Out (5107 bp) (A) and gene insertion vHDB1-Out (433 bp) (B).

Transfection was confirmed by the presence of fluorescent cells, although the efficiency was relatively low (Fig. 2, 3).

Figure 2. HEK-293T cells transfected with pRFP (**A**), pHBDRFP-Out (**5**) and pHBD-Out (**B**) using 2000 ng of plasmids and GenJect-39. 48 h after transfection.

Figure 3. Transfection efficiency of HEK-293T cells depending from plasmid DNA concentration.

hBD1 production was detected in both cell lysates and supernatants, showing similar expression patterns for pHBD1-Out and pHBD1RFP-Out (Fig. 4).

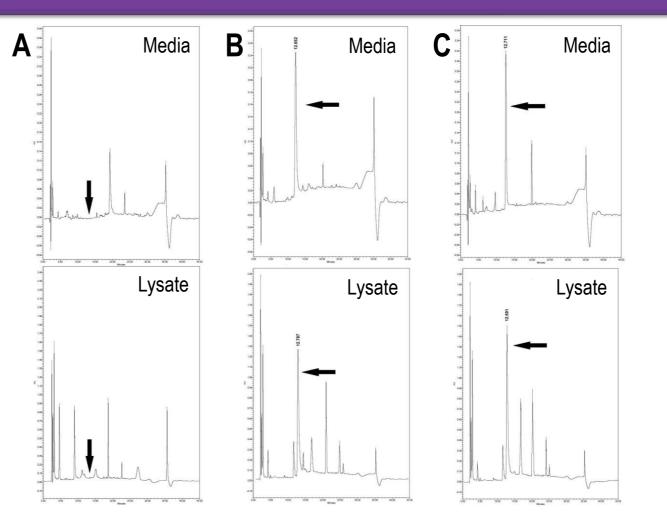
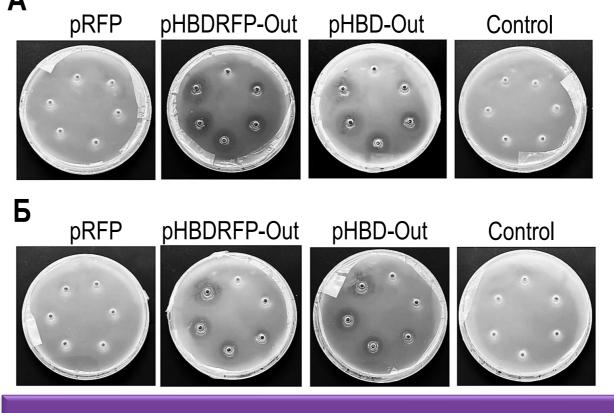



Figure 4. HPLC analysis of lysates and supernatants from HEK-293T cells transfected with pRFP (**A**), pHBDRFP-Out (**B**) and pHBD-Out (**C**). Arrow indicates the hBD1 peak. The average retention time was 12.7 min.

Lysates demonstrated pronounced antimicrobial activity comparable to ampicillin (Fig. 5). Supernatants also inhibited *E. coli* growth, though less effectively.

Figure 5. Antimicrobial activity test of lysates (**A**) and supernatants (**B**) from transfected HEK-293T cells against *E. coli*. Intact HEK-293T cell were used as "Control".

CONCLUSION

The constructed plasmids enabled efficient hBD1 expression in HEK-293T cells. The recombinant peptide exhibited antimicrobial activity comparable to conventional antibiotics, highlighting the potential of cell-based systems for AMP production and the development of novel antimicrobial therapeutics.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in 2025 (No. 0088-2025-0004).