

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Repurposing Aspirin and Simvastatin into a Bioavailable Co-Crystal with Enhanced Anti-Breast Cancer Activity

Mala Parab¹*, Kshitij Salgaonkar¹, Pramodkumar P. Gupta¹, Prerona Boruah¹, Debjani Dasgupta¹, Santosh Chhajed², Avinash Kale³

1. School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, India.

2. Department of Pharmaceutical Chemistry, METs Institute of Pharmacy, Bhujbal Knowledge City, Adgoan, Nashik, India

3. Reader F · UM-DAE Center for Excellence in Basic Sciences (CEBS), Mumbai, India.

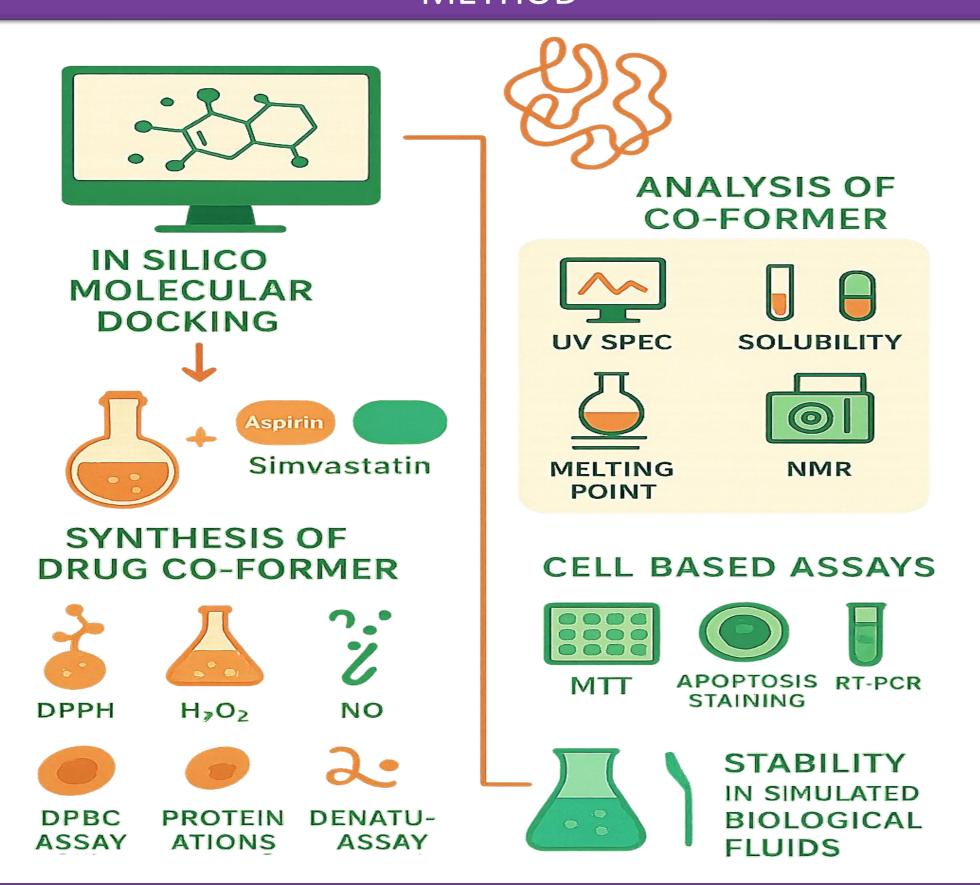
Corresponding author: <u>malaparab@gmail.com/</u> <u>malaparab@gmail.com/</u>

D Y PATIL

INTRODUCTION & AIM

INTRODUCTION

- * Breast carcinoma, a principal contributor to global cancer-related morbidity and mortality, highlighting a critical demand for innovative therapeutic modalities.
- **Conventional chemotherapeutic** agents are frequently limited by non-specific biodistribution and dose-limiting systemic toxicities which has catalysed the investigation of alternative paradigms, including pharmaceutical repurposing and the engineering of multi-component crystalline forms.
- * Aspirin, a canonical nonsteroidal anti-inflammatory drug (NSAID), demonstrates documented chemo preventive and antitumor properties via irreversible inhibition of cyclooxygenase (COX) isoforms and potentiating mitochondrial apoptotic pathways
- Simvastatin, a potent inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, has revealed pleiotropic anti-neoplastic effects independent of its lipidlowering activity.
- * The drug-drug co-crystal (DDC) approach constitutes a supramolecular strategy to coalesce two active pharmaceutical ingredients (APIs) into a singular, homogeneous crystalline lattice under non-covalent interactions.
- * DDC are fundamentally optimized critical quality attributes, such as aqueous solubility, dissolution kinetics, and solid-state stability, thereby potentially augmenting in vivo bioavailability without chemical modification of the constituent APIs.


AIM

Mechanochemical synthesis, comprehensive solid-state characterization, and preclinical biological profiling of a novel Aspirin-Simvastatin Co-crystal as a prospective synergistic entity for the management of breast cancers.

OBJECTIVES:

- 1. Computational Design and Solid-State Synthesis: To computationally validate the synergistic potential of Aspirin and Simvastatin via molecular docking against key oncogenic targets, followed by the mechanochemical synthesis of a novel Aspirin-Simvastatin co-crystal, with its formation unequivocally confirmed by a suite of solid-state characterization techniques.
- Comprehensive Preclinical Biological Profiling: To conduct a comparative evaluation of the cocrystal's bioactivity, assessing its enhanced antioxidant and anti-inflammatory properties, and its superior efficacy against MCF-7 breast cancer cells.
- Physicochemical and Biopharmaceutical Assessment: To determine the developed co-crystal's physicochemical stability and simulate its gastrointestinal dissolution profile to predict in vivo performance and potential for improved oral bioavailability.

METHOD

RESULTS & DISCUSSION

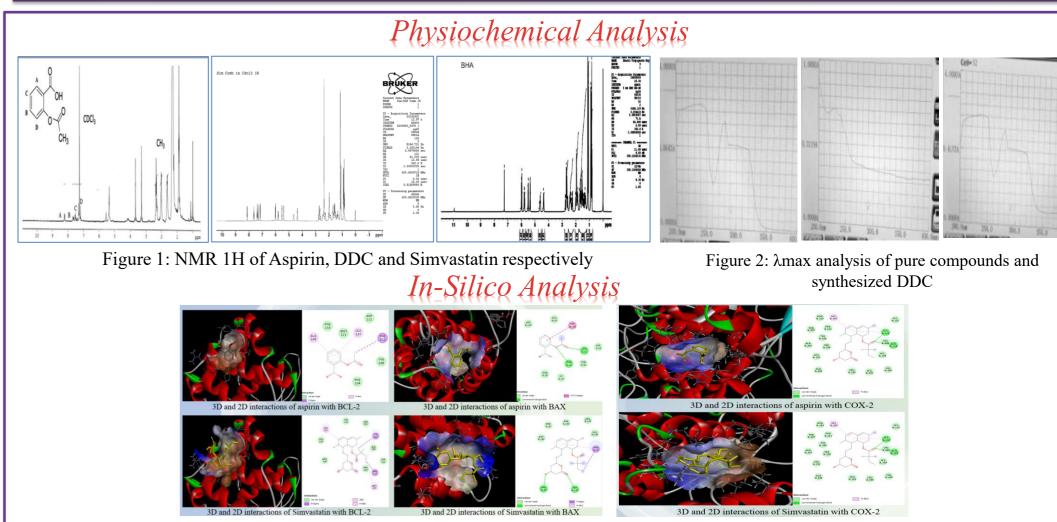


Figure 3: 2D, 3D Interactions of Key Oncogenic Markers with Aspirin and Simvastatin

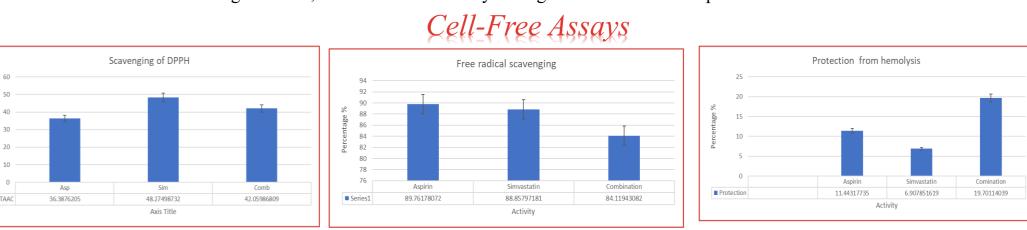


Figure 3:Antioxidant potentials and Protection from haemolysis of pure compound and DDC

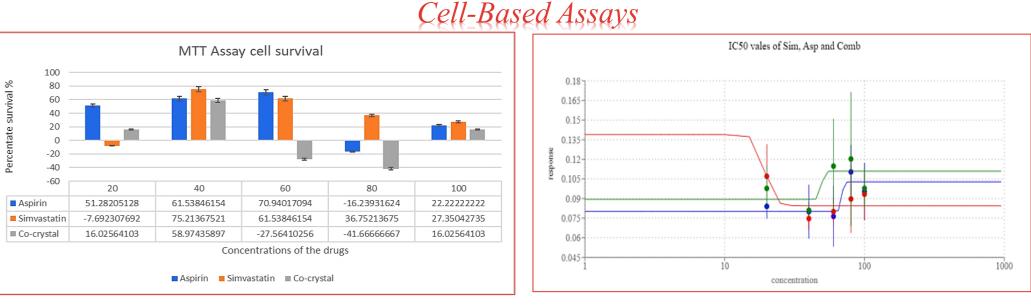


Figure 4:Cytotoxicity analysis and calculated IC₅₀ values, on MCF-7 cells

Figure 5:Antiproliferative effect of synthesized Co-former at IC50 value, by scratch assay and Apoptosis Assay by Hoechst staining (MCF-7 cell line)

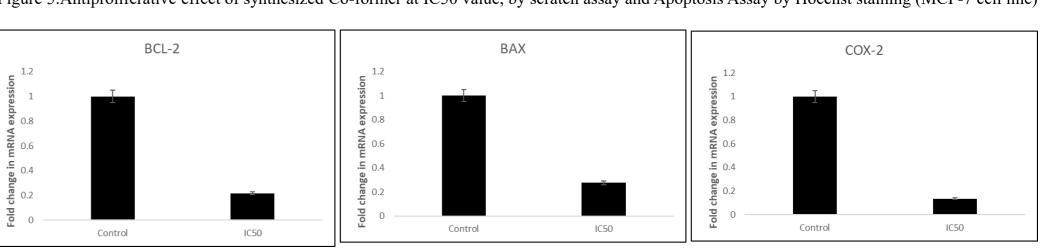


Figure 6: RT-PCR analysis of Key oncogenic marker genes in MCF-7 cell line treated with IC50 values of synthesized co-former

CONCLUSION

- Successful Co-crystal: A novel Aspirin-Simvastatin co-crystal with enhanced solubility and stability was formed.
- Potent Anti-cancer Activity: It demonstrated superior anti-proliferative effects against breast cancer cells, outperforming the parent drugs.
- Pro-apoptotic Mechanism: Activity is driven by inducing apoptosis via key gene regulation (↓BCL-2/COX-2, ↑BAX).
- Promising Candidate: This co-crystal is a rational, repurposing strategy for a potentially faster route to breast cancer therapy.

REFERENCES

- Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today. 2016 Mar;21(3):481-90. doi: 10.1016/j.drudis.2016.02.001. Epub 2016 Feb 8. PMID: 26869329.
- 2. Giri, S., Varshney, A., Nangia, A., & Govindarajan, R. (2023). Pharmaceutical co-crystals of poorly soluble anticancer drugs: Improved dissolution and efficacy. Journal of Pharmaceutical Sciences, 1271. https://doi.org/10.1016/j.xphs.2023.02.005
- 3. Patel, K., Li, H., & Zaworotko, M. J. (2024). Targeting apoptosis in cancer therapy: The role of co-crystals in modulating BCL-2 family proteins. Crystal Growth & Design, 24(1), 456–470. https://doi.org/10.1021/acs.cgd.3c01102