The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Development of amino-alcohol-quinolines targeting lung diseases caused by non-tuberculous mycobacteria

Élise Charrier^{a,b}, François Peltier^b, Morgane Choquet^b, Alexandra Dassonville-Klimpt^a, Claire Andréjak^b, Pascal Sonnet^a.

^aAGents Infectieux, Résistance et chimiothérapie, UR 4294, Université de Picardie Jules Verne, Bâtiment H, Campus du Thil, 80025 Amiens.

bAGents Infectieux, Résistance et chimiothérapie, UR 4294, Université de Picardie Jules Verne, CURS, CHU Amiens-Picardie, 30 av. de la Croix Jourdain, 80025 Amiens.

INTRODUCTION & AIM

In Europe and North America, the incidence of infections caused by non-tuberculous mycobacteria (NTM) exceeds that of M. tb [1]. The effectiveness of the treatment for MAC bronchiectasis is estimated 52%, due to the development of macrolide resistance. Consequently, our team's aim is to develop safer molecules, able to overcome antibiotic resistance. The quinoline pharmacophore is found in the structure of mefloquine (MQ), an antimalarial agent that also has antimycobacterial properties (Figure 1) [2,3]. After screening of few synthesised amino-alcohol-quinolines (AAQ), as MQ analogues, a hit A was identified. To further increase the selectivity index (SI) and to establish new structure activity or toxicity relationships (SAR/STR), new AAQ were designed starting from hit A (Figure 2).

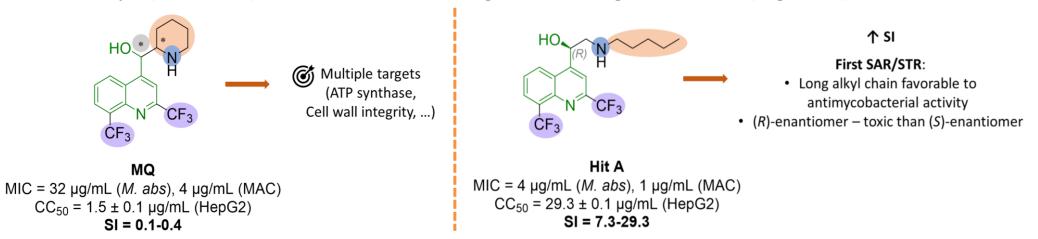


Figure 1: Antimycobacterial quinolines (MQ and new AAQ).

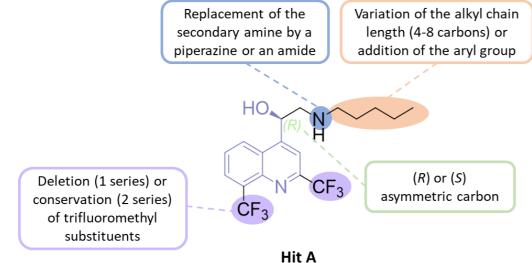
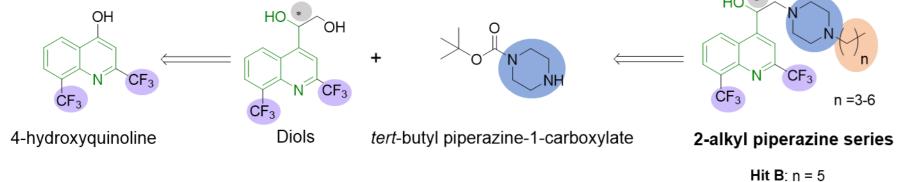



Figure 2: Development of new AAQ.

Synthesis: The AAQ were obtained using two synthesis strategies. However, only the one from series 2 with alkyl piperazine substituents is shown. The enantiopure AAQ were obtained through asymmetric synthesis in five or seven steps (Scheme 1).

Scheme 1: Retrosynthesis of 2-alkyl piperazine series.

In vitro antimycobacterial activity

Cytotoxicity (MTT test) • Fast-growing NTM: rough and smooth morphotypes of *M. abscessus*

Checkerboard assay

- Two clinical strains of *M. abscessus* sp. *bolletii* and sp. *massiliense*
- Slow-growing NTM: M. marinum, M. avium and M. kansasii

Selection of the **AAQ** with the highest SI (CC_{50} /MIC) \rightarrow Hit B

HepG2 cells

- Rifamycin (RIF)

Hit B with: - Clarithromycin (CLR) • The fractional inhibitory coefficient index (FICI) = (MIC of antibiotic A in association / MIC of antibiotic A alone) + (MIC of antibiotic B in association / MIC of antibiotic B alone). - Ethambutol (EMB)

In vivo tolerance: The acceptable in vivo dose of hit B was determined in BALB/c mice according to OCDE/ODCE Test Guideline n°425 [4].

In vivo efficacy: The hit B was administered in both mono- and triple therapy in BALB/c mice

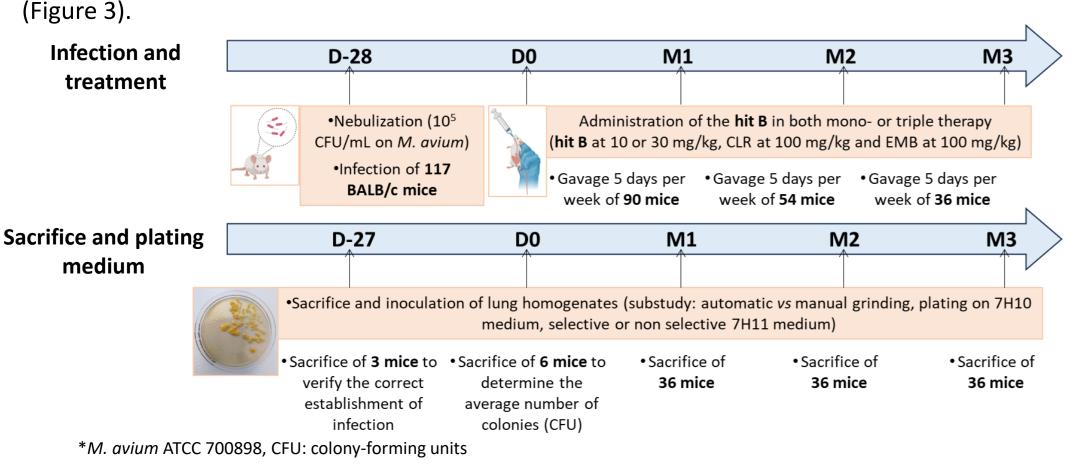
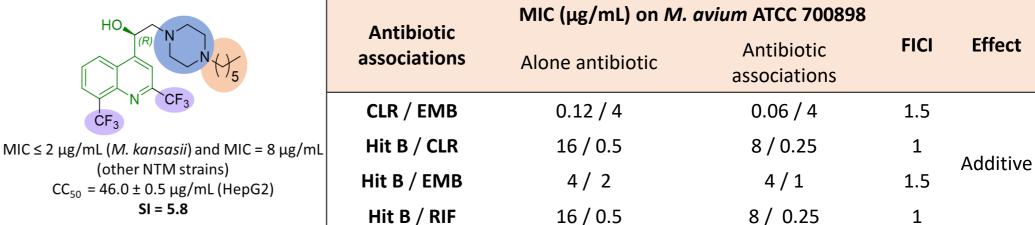


Figure 3: In vivo efficacy of hit B in BALB/c mice.


RESULTS & DISCUSSION

Twenty-eight AAQ were synthesised and eight compounds of series 2 with alkyl piperazine were obtained, with overall yields of 6 to 32%, and enantiomeric excesses greater than or equal to 86% (Scheme 2).

Scheme 2: Synthesis of 2-alkyl piperazine series.

In vitro antimycobacterial activity (1 \leq MIC \leq 64 µg/mL) and cytotoxicity assays (12.5 \leq CC₅₀ \leq 46.0 μg/mL) led to identify a new hit (hit B, Figure 4), the (R)-enantiomer with hexyle chain, and exhibited the highest SI against M. avium (SI = 5.8). Therefore, the hit B was selected for further evaluation of potential synergistic effect. For all antibiotic combinations tested (CLR/EMB, hit B/EMB, hit B/CLR and hit B/RIF), the FICI values were equal to 1 or 1.5, demonstrating an additive effect (Table 1).

Table 1: FICI calculation for CLR/EMB, hit B/CLR, hit B/EMB and hit B/RIF associations. Hit B

Two antibiotics have a synergistic effect when FICI ≤ 0.5, an additive effect when 0.5 < FICI < 2 and an antagonist effect when $2 \le FICI$.

The in vivo safety of hit B was supported by the survival of three consecutive BALB/c mice, when administered as a single dose of up to 550 mg/kg (Figure 5).

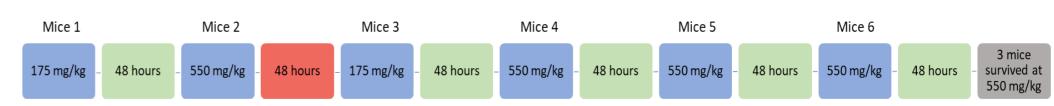


Figure 5: Administered dose and outcome in mice.

The hit B was administered in both mono- and triple therapy with CLR and EMB in BALB/c to evaluate its in vivo efficacy. This study was confirmed the feasibility of daily administration of **hit B** over several months of treatment.

- Automatic lung grinding mode is better than manual mode.
- 7H10 plating medium is better than 7H11 selective and 7H11 non selective.

Agar plate reading was revealed a very low CFU counts (CFU ≤ 115), indicating that the infection was not sufficiently severe to highlight the potential efficacy of hit B.

• 10° CFU/mL is the minimal nebulized inoculum load.

CONCLUSION & FUTURE WORK

- Enantioselective synthesis: 28 AAQ were synthesised.
- *In vitro* biological evaluation: SAR/STR were established → Identification of hit B.
- In vivo toxicity: acceptable single dose of hit B ≥ 550 mg/kg in BALB/c mice.
- In vivo efficacy: too low initial infection in BALB/c mice → protocol optimization determined that a minimum nebulized M. avium inoculum of 10^9 CFU/mL.

Perspectives:

Novel pharmacomodulations: ↑ SI.

Figure 4: New hit identified.

- In vitro anti-mycobacterial activity of AAQ on additional clinical strains.
- New evaluation of the *in vivo* efficacy of **hit B** with nebulized inoculum of 10° CFU/mL.

REFERENCES

[1] Griffith, D.E. et al. American Journal Respiratory and Critical Care Medicine 175, 367-416 (2007). [2] Bermudez, L.E. et al. J. infect. Dis. 187, 1977-1980 (2003). [3] Laumaillé, P. et al. Pharmaceuticals 12, 91 (2019). [4] Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure Available online: https://www.oecd.org/en/publications/test-no-425-acute-oral-toxicity-up-and-downprocedure_9789264071049-en.html (accessed on 17 January 2025).