The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

From the design to the biological evaluation of quinoline-based carboxamides targeting non-tuberculous mycobacteria

Marie Gréverie^{1*}, François Peltier², Alexandra Dassonville-Klimpt¹, Claire Andréjak² and Pascal Sonnet¹ ¹UR4294, AGIR, Université de Picardie Jules Verne, Bâtiment H, Campus du Thil, 80025 Amiens ²UR4294, Université de Picardie Jules Verne, CURS, CHU Amiens-Picardie, 30 av. De la Croix Jourdain, 80000 Amiens

*Correspondence: marie.greverie@u-picardie.fr

INTRODUCTION & AIM

In Europe and in North America, non-tuberculous mycobacterial (NTM) infections accounts from 1.0 to 1.8 case per 100,000 people. Several thousands people die each year from NTM infections. Intrinsic and acquired resistances pose a public health challenge and explain part of the difficulties to treat these infections.

For few years, the macrolide resistance has been known as a major problem for water clinical specialists and their patients. NTM sources are commonly found in the environment and are especially harmful to high-risk people, such as those with weakened immune system or pre-existing diseases⁽¹⁾. Some NTM species are pulmonary pathogens and are found in 75 % of respiratory clinical isolates. NTM can be distinguished according to their growth: slow-growing species including MAC complex, M. xenopi, M. kansasii and M. marinum; and also rapid-growing species such as M. abscessus (Mab) complex and *M.* fortuitum⁽²⁾.

In this context, the promising quinoline scaffold allowed us to design a novel series of quinoline-based carboxamides as potential antimycobacterial agents.

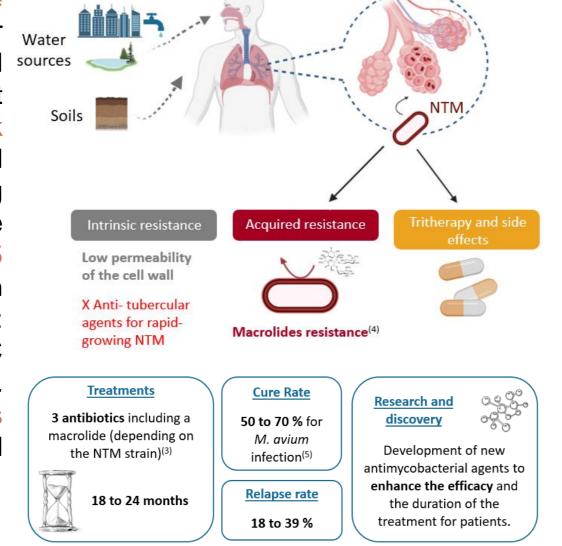
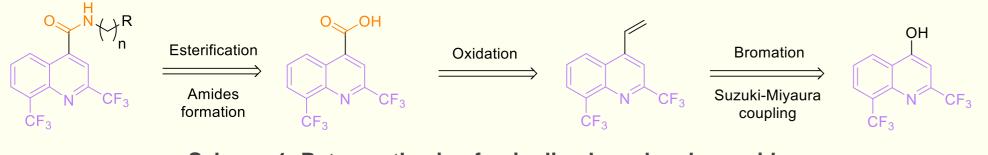



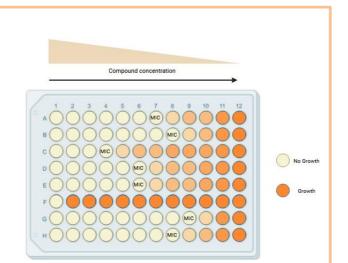
Figure 1: Development of NTM infections, main health challenges and objectives.

METHOD

Retrosynthesis of quinoline-based carboxamides:


Final carboxamides were designed following a five-step synthesis. These compounds were obtained via an amidation of ester intermediates, which resulted in two oxidation and esterification reactions. Ester precursors were produced from a carboxylic acid intermediate, synthesized from a vinyl compound, obtained via a bromination of 2,8bis(trifluoromethyl)quinolin-4-ol, followed by a Suzuki-Miyaura coupling (Scheme 1).

Scheme 1: Retrosynthesis of quinoline-based carboxamides.


Determination of physico-chemical properties of carboxamides:

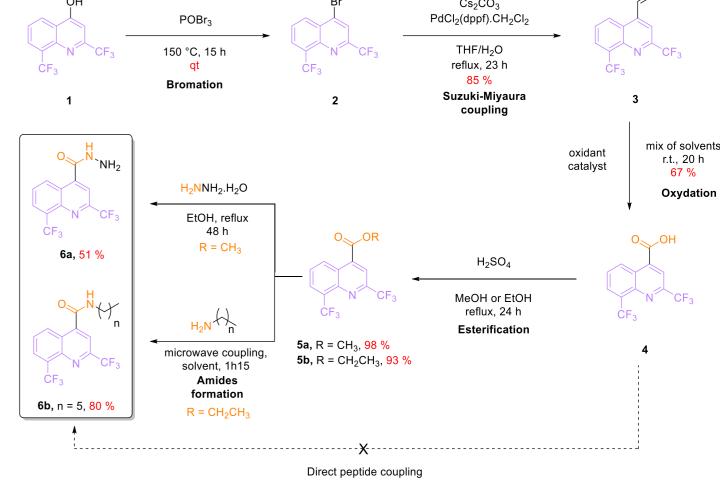
To predict the pharmacokinetics properties, the Lipinski's and Veber's rules were calculated using QikProp and Pallas softwares. This includes standard ranges for the molecular weight (MW < 500), the number of hydrogen bonds donor (HBD < 5), the number of hydrogen bonds acceptor (HBA < 10), the predicted octanol/water partition coefficient (clogP < 5), the rotary connections (rotor <10) and the polar surface area (PSA < 140 $Å^2$).

<u>Testing the antimycobacterial activity of carboxamides:</u>

Minimal Inhibitory Concentrations (MICs) were determined against 7 NTM strains: Mab smooth and rough morphotypes, M. fortuitum, M. avium, M. xenopi, M. marinum and M. kansasii. Amikacine (AMK), clarithromycin (CLR) and rifampicin (RIF) were used as 3 antibiotics references.

REFERENCES

(1) Griffith et al., Am. J. Respir. Crit. Care Med., 2007,175(4): 367-416. (2) Stokes et al., ACS Infect. Dis., 2020, 1324. (3) Daley et al., Eur. Respir. J., 2020, 4-10. (4) Morimoto et al., Ann. Am. Thorac. Soc., 2016, 13(11): 1904-11. (5) Tarashi et al., Biomed. Res. Int., 2022, 2.


RESULTS & DISCUSSION

Synthesis of quinoline-based carboxamides

The first two steps consisted in a bromination of 1, followed by a Suzuki-Miyaura coupling to give the 2,8-bis(trifluoromethyl)-4-vinylquinoline 3 with 85 % yield. To afford the acid 4, an oxydation was realized to obtain it with 67 % yield. Then, direct couplings of 4 with amines have been tested with different coupling agents (EDCI/HOBt, COMU or HOBt/HBTU) but without success. The activation of 4 to the corresponding esters 5a

and **5b** was necessary to facilitate the formation of amides 6a and 6b.

A first hydrazide-hydrazone 6a was obtained from the methylic ester in 51 % yield. After optimized conditions, the reaction between the ethylic ester 5b and the pentylamine in a microwave irradiation gave the compound 6b in 80 % yield.

HBD

Acceptable

Compound

zone

Figure 2: Synthesis of 2,8-bis(trifluoromethyl)quinoline-4-carboxamides 6a and 6b.

Physico-chemical properties

According to the results, compounds 6a and 6b satisfied drug-likeness conditions, except a value for 6a (red line). It slightly exceeds the desirable lipophilicity value (clogP = 5.15) for a good oral administration but this property seems to be advantageous for penetrating the NTM lipophilic membrane.

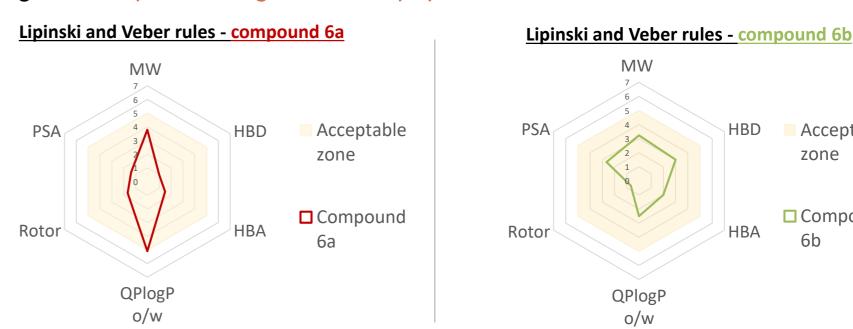


Figure 3: Radar diagrams of final compounds 6a and 6b and acceptable values for oral bioavailability (beige zone).

Antimycobacterial activities

Unfortunately, compounds 6a and 6b on both slow-growing and rapid-growing species were inactive, with MIC values above 128 µg/mL.

MIC (μg/mL)	NTM species						
	Mab (R)	Mab (S)	M. fortuitum	M.avium	M. xenopi	M. marinum	M. kansasii
6a	>128	>128	>128	>128	>128	>128	128
6b	>128	>128	>128	>128	>128	>128	>128
АМК	8	8	ND	2-16	ND	1-4	ND
CLR	Inductible R	Inductible R	Inductible R	0.5-2	≤ 0.25	0.5-2	ND
RIF	ND	ND	ND	0.5-4	< 0.05	≤ 0.5-2	ND

Table 1: Antimycobacterial activities against different NTM species. R: resistance, ND: not determined.

CONCLUSION / FUTURE WORK

- ✓ Two final compounds **6a** and **6b** were obtained with 28 % and 23 % global yields.
- ✓ They satisfied drug-likeness conditions and **6b** showed a good lipophilicity value (clogP > 5 for **6b**) compatible to cross the NTM membrane.
- ✓ Further pharmacomodulations and optimizations are underway to complete these series and the structure-activity relationships.