

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

SYNTHESIS AND CYTOTOXICITY PROFILING OF PYRIDINE-BASED MELANOSTATIN PEPTIDOMIMETICS TARGETING PARKINSON'S DISEASE

Beatriz L. Pires-Lima,^{1,2} Xavier C. Correia,¹ Hugo F. Costa-Almeida,¹ Nuno Vale,^{2,3} Xerardo García-Mera,⁴ José E. Rodríguez-Borges,¹ Ivo E. Sampaio-Dias¹

¹LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Porto, Portugal, ²PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Porto, Portugal, ³RISE-Health, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Porto, Porto, Portugal, ⁴Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.

INTRODUCTION & AIM

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of central nervous system (CNS), characterized by the progressive loss of mesencephalic dopaminergic Current therapies neurons.¹ provide symptomatic relief but do not halt disease progression, highlighting the urgent need for novel and innovative therapeutic strategies.² Melanostatin (MIF-1), a hypothalamic neuropeptide and positive allosteric modulator (PAM) of dopamine D₂ receptors, has emerged a promising candidate for PD treatment. 2 However, its peptide nature restricts clinical use due to its poor oral bioavailability and limited metabolic stability.²

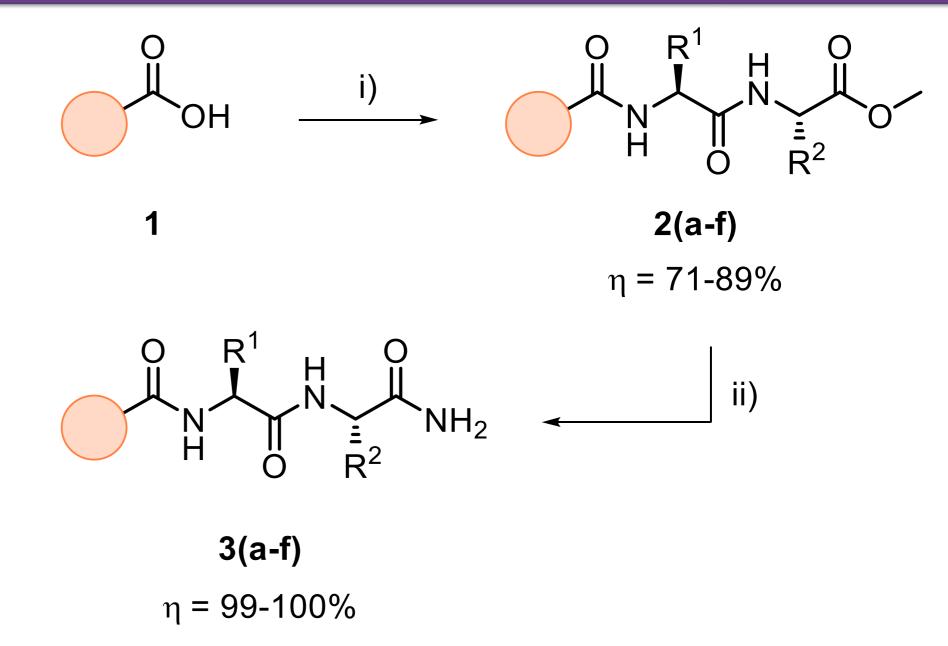
Figure 1. Structure of MIF-1

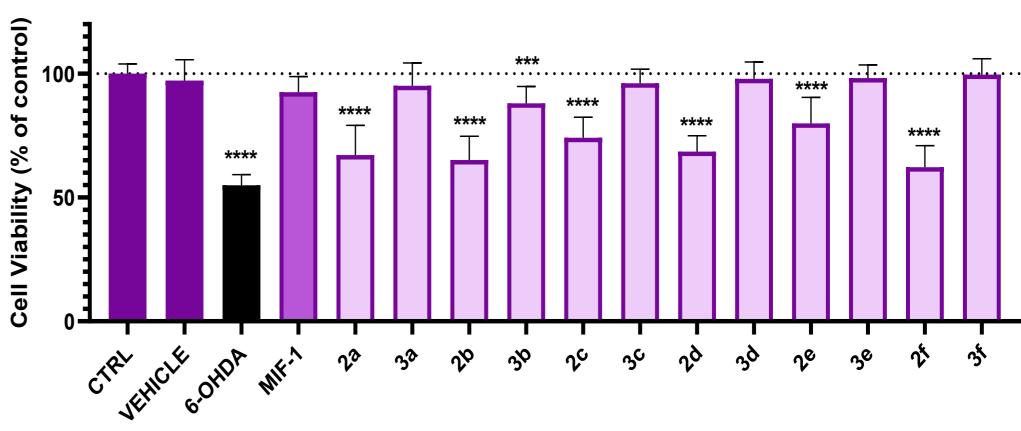
In this work, we designed and synthesized twelve novel analogs using pyridine-based carboxylic acids as prolyl surrogates to address the pharmacokinetic limitations of MIF-1. Pyridine-based scaffolds are known for their structural versatility and CNS drug-like properties, including neuroprotective and neurotransmitter-modulating effects.³⁻⁴

METHOD

The synthesis route is depicted in **Scheme 1**. Starting with the selected pyridine scaffold (1), tripeptides **2(a-f)** were synthesized by peptide coupling with *C*-terminal dipeptides (a-f), in good yields (71-89%). Subsequently, methyl ester groups of **2(a-f)** were converted into the corresponding primary amides **3(a-f)** via ammonolysis with NH₃ 7 M in MeOH in quantitative yields.

Toxicological assays were carried out for both esters and amides in differentiated human SH-SY5Y neuroblastoma cells using the MTT reduction assay. The results are depicted in **Figure 2**.




NORTE2020

RESULTS & DISCUSSION

Scheme 1. Synthesis of MIF-1 peptidomimetics. *Reagents and conditions*: (i) Et₃N, TBTU, dipeptides **a-f**, anhydrous CH₂Cl₂; (ii) NH₃ 7 M in MeOH.

Structure-cytotoxicity relationship studies in differentiated SH-SY5Y cells identified that, in this group of analogs, the methyl ester group acts as a toxicophore, whereas the corresponding amide counterparts exhibited improved toxicological profiles.

Figure 2. MTT reduction assay. Data are expressed as a percentage of control and are presented as mean \pm standard deviation from at least three independent experiments, each performed in triplicate. Statistical analyses were performed using the analysis of variance (ANOVA) test followed by the uncorrected Fisher's LSD (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 vs. control).

CONCLUSION

These findings offer valuable insights for the development of novel pyridine-based MIF-1 analogs with adequate toxicological profiles, contributing to the development of safer and more effective anti-Parkinson agents.

FUTURE WORK / REFERENCES

- (1) Balestrino, R.; Schapira, A. H. V. Eur. J. Neurol. 2020, 27, 27.
- (2) Sampaio-Dias, I. E.; et al. *ACS Chem. Neurosci.* **2019**, *10*, 3690.
- (3) Gasperi, V., et al., *Int. J. Mol. Sci.*, **2019**, *20*, 974.
- (4) Wuerch, E., et al., *Neurother.*, **2023**, *20*, 1037-1054.

Acknowledgements: This work received financial support from PT national funds (FCT/MECI, Fundação para a Ciência e a Tecnologia and Ministério da Educação, Ciência e Inovação) through project 2023.14440.PEX (DOI: 10.54499/2023.14440.PEX). FCT is also acknowledged for supporting the project UID/50006 - Laboratório Associado para a Química Verde - Tecnologias e Processos Limpos. I.E.S.-D. thanks FCT for funding through the Individual Call to Scientific Employment Stimulus with reference 2020.02311.CEECIND/CP1596/CT0004 (DOI: 10.54499/2022.14060.BD), 2024.02245.BD, and UI/BD/154888/2023 (DOI: 10.54499/UI/BD/154888/2023), respectively. N.V. thank FCT for funding through projects IF/00092/2014/CP1255/CT0004, PRR-09/C06-834I07/2024.P11721, 2024.18026.PEX and the Chair in Onco-Innovation at the FMUP. X.G.-M. thanks Consellería de Cultura, Educación e Ordenación Universitaria of the Galician Government (grant: ED431B 2023/25) and Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación (PID2021-124010OB-100) for the financial support.