

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Design-Oriented Synthesis of Melanostatin Derivatives: Exploring Structural and Functional Diversity

Hugo F. Costa-Almeida¹, Xavier C. Correia¹, Beatriz L. Pires-Lima¹, Ivo E. Sampaio-Dias¹

¹LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto,

Porto, Portugal

INTRODUCTION & AIM

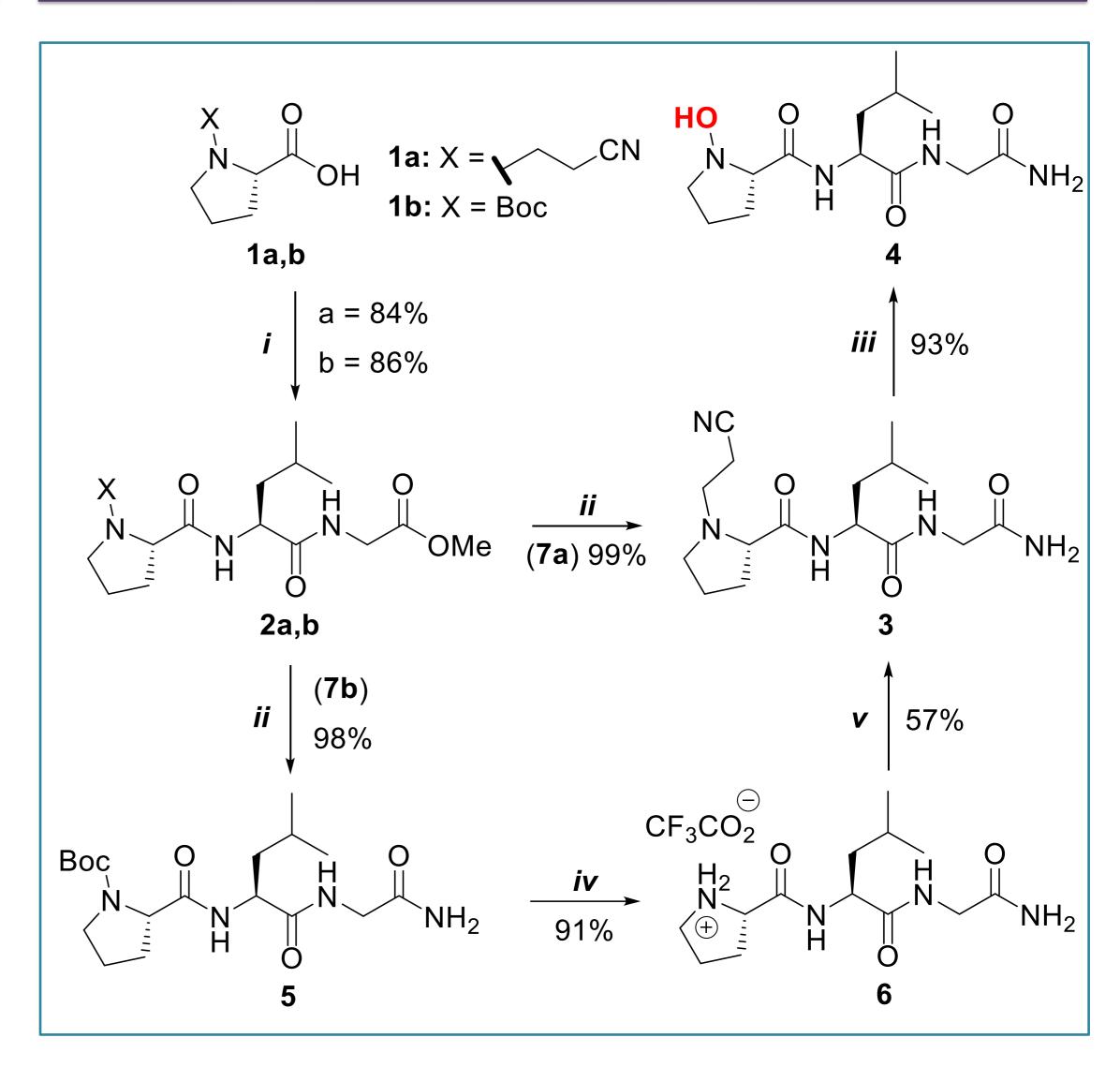
Hydroxylated amino acids are key components in biologically active peptides, influencing conformation and activity.[1] However, *N*-hydroxylated residues such as *N*-hydroxy-L-proline remain largely unexplored due to the absence of efficient synthetic methodologies.

This work presents a new approach for the on-site N-hydroxylation of prolyl-containing peptides via Cope elimination, using the cyanoethyl group as both a protecting and leaving group. Melanostatin (MIF-1), a neuropeptide with activity as a positive allosteric modulator of the dopamine D_2 receptors,[2] was selected as a model peptide to demonstrate this strategy. The aim was to develop a robust, high-yielding method for the assembly of N-hydroxy-MIF-1, expanding access to N-hydroxyprolyl peptides.

HO O HO O HO NH2

N-Hydroxy-L-proline

$$N$$
-Hydroxy-MIF-1


Figure 1. Structure of *N*-hydroxy-∟-proline and *N*-hydroxy-MIF-1

METHOD

Starting from *N*-(cyanoethyl)-L-proline, the peptide sequence was assembled through TBTU-mediated coupling. The cyanoethyl group served as a temporary *N*-protection during synthesis and as a leaving group during the oxidative step. On-site *N*-hydroxylation was achieved by Cope elimination upon oxidation with *m*-chloroperbenzoic acid (*m*-CPBA) in methanol, affording *N*-hydroxy-MIF-1 in high yield. Comprehensive spectroscopic characterization (1D and 2D NMR) together with HRMS analyses confirmed the structure. Comparative optimization of early versus late cyanoethyl installation identified the most efficient route for *N*-hydroxy-MIF-1 synthesis.

RESULTS & DISCUSSION

Scheme 1. On-site assembly of *N*-hydroxy-MIF-1. Reagents and conditions: *i*. TBTU, DIPEA, methyl L-leucylglycinate trifluoroacetate, CH₂Cl₂. *ii*. 7 M NH₃ solution in MeOH. *iii*. *m*-CPBA, MeOH. *iv*. TFA, CH₂Cl₂. *v*. acrylonitrile, DIPEA.

CONCLUSION

A novel on-site *N*-hydroxylation protocol for prolyl-containing peptides was developed, exploiting the cyanoethyl group as a bifunctional protecting and leaving group. This method enabled the synthesis of *N*-hydroxy-MIF-1 in excellent yield without requiring additional protecting-deprotecting steps. The approach proved mild, efficient, and broadly applicable to other peptide systems. This work establishes a new route for preparing *N*-hydroxyprolyl peptides with potential in organic and medicinal chemistry.

REFERENCES

- [1] Sarnowski, M. P., et al., Org. Biomol. Chem. 2020, 18, 3690.
- [2] Verma, V., et al., Neuropharmacology, 2005, 315(3), 1228.

Funding: This work received financial support from PT national funds (FCT/MECI, Fundação para a Ciência e Tecnologia and Ministério da Educação, Ciência e Inovação) through project 2023.14440.PEX (DOI: 10.54499/2023.14440.PEX). Acknowledgements: FCT is also acknowledged for supporting the project UID/50006 - Laboratório Associado para a Química Verde - Tecnologias e Processos Limpos. I.E.S.-D. thanks FCT for funding through the Individual Call to Scientific Employment Stimulus with reference 2020.02311.CEECIND/CP1596/CT0004 (DOI: 10.54499/2020.02311.CEECIND/CP1596/CT0004). B.L.P.-L., X.C.C., and H.F.C.-A. thank FCT for the Ph.D. grants 2022.14060.BD (DOI: 10.54499/2022.14060.BD), 2024.02245.BD, and UI/BD/154888/2023 (DOI: 10.54499/UI/BD/154888/2023), respectively.