The 4th International Online Conference on Materials

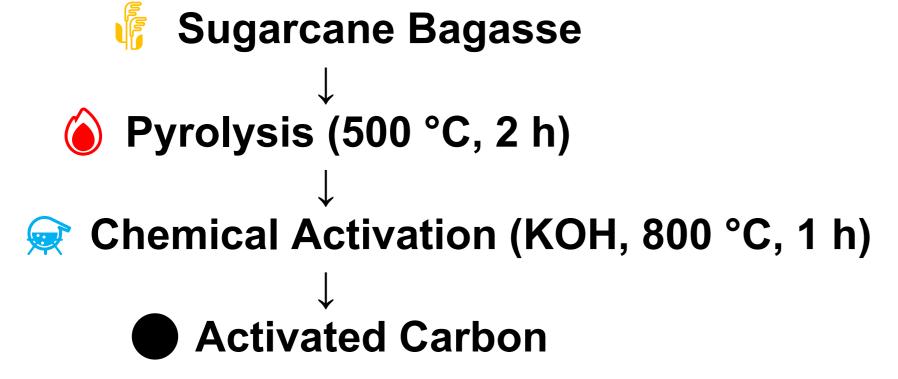
3-6 November 2025 | Online

BIOMATERIALS FOR SKINCARE APPLICATIONS: SUGARCANE BAGASSE-BASED ACTIVATED CARBON AS A SUSTAINABLE ALTERNATIVE

Precious Chikwado Nicholas

Department of Chemical Engineering, University of Port Harcourt, Rivers State, Nigeria.

pnwaiwu010@uniport.edu.ng


INTRODUCTION & AIM

The demand for eco-friendly skincare products is consumers prioritize sustainability. rising as Conventional activated carbon production is resource-intensive, creating a need for greener alternatives. Sugarcane bagasse, an abundant agroindustrial byproduct, provides a renewable and lowcost precursor for activated carbon with tunable pore chemistry. and structure surface **AIM:** To develop and characterize sugarcane bagasse-based activated carbon (SBAC) for skincare applications, focusing on its deep-cleansing performance and adsorption of sebum and skinrelevant toxins. This study explores SBAC as a sustainable and high-performance biomaterial, linking agricultural waste valorization to the growing demand for eco-friendly cosmetic ingredients

METHOD

SYNTHESIS PROCESS

Sugarcane bagasse was converted into activated carbon using a two-step process involving pyrolysis and KOH chemical activation.

CHARACTERIZATION AND TESTING

BET Analysis: Measured surface area & pore volume.

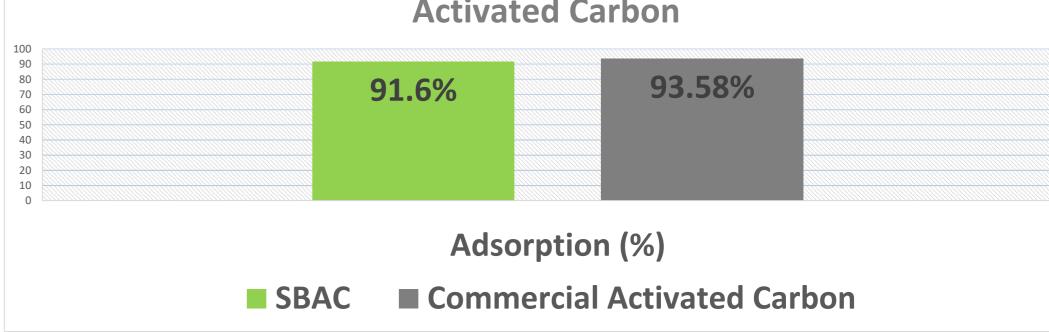
SEM: Observed porous structure.

FTIR: Identified O–H, C=O, C–O groups confirming surface functionalization.

Adsorption Testing: Evaluated removal of sebum analogs (lipids) and model toxins (methylene blue) using the silicone skin model.

Comparison with Commercial AC: Benchmarked against commercial activated carbon (Performance evaluation).

RESULTS & DISCUSSION


STRUCTURAL CHARACTERIZATION

Sample	BET Surface Area (m²/g)	Total Pore Volume (cm³/g)	Avg. Pore Diameter (nm)	MB Adsorption (mg/g)	lodine Number (mg/g)
SBAC	3543	1.05	6.7	341.5	1095
Commercial AC	2140	1.27	3.1	301.7	1135

SBAC shows higher surface area and mesoporous character, supporting efficient adsorption comparable to commercial AC, even without extensive surface imaging data.

ADSORPTION PERFORMANCE

Adsorption Performance of SBAC vs Commercial Activated Carbon

SBAC demonstrated comparable adsorption capacity to commercial activated carbon, validating its suitability for eco-friendly skincare formulations.

DISCUSSION & IMPLICATIONS

Efficient waste-to-value conversion: Transforms sugarcane bagasse into high-performance activated carbon, supporting circular economy goals.

Sustainable material source: Provides an ecofriendly and consistent alternative for skincare manufacturers.

Economic potential: Creates a new revenue stream for sugar mills through bagasse valorization.

CONCLUSION

SBAC demonstrated high surface area, tunable porosity, and favorable surface chemistry, resulting in efficient adsorption of skin-relevant substances. These properties make it a promising eco-friendly ingredient for cosmetic formulations, supporting sustainability and circular economy goals.

FUTURE WORK / REFERENCES

Future studies will focus on integrating the material into cosmetic formulations and assessing long-term biocompatibility. Optimization of activation conditions for large-scale production is also planned.