The 4th International Online Conference on Materials

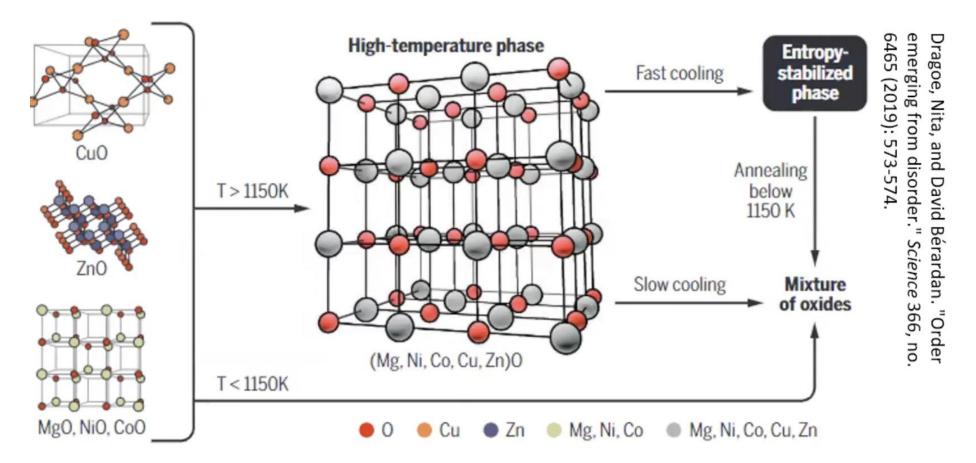
3-6 November 2025 | Online

Multi-Principal Rare-Earth Substitution and Entropy Effects in BiFeO₃: Structural, Dielectric, and Magnetic Properties

UNIVERSITÀ DEL SALENTO

Saba Aziz*1, Anna Grazia Monteduro1, Silvia Rizzato1, Ritu Rawat1, Giuseppe Maruccio1

Department of Mathematics and Physics, University of Salento, CNR NANOTEC – Institute of Nanotechnology, c/o Ecotekne Campus, Via Monteroni, 73100 Lecce, Italy



INTRODUCTION & AIM

BiFeO₃ (BFO) is a well-known room-temperature multiferroic, combining ferroelectric and magnetic order. Its practical application is limited by phase instability, high leakage, and weak magnetization.

Entropy engineering, based on multi-principal cation substitution, provides a new route to stabilize complex oxides. By increasing configurational entropy on the A-site, disorder can lead to thermodynamic stabilization and enhanced functionality.

Aim: To explore the configurational-entropy effects in BFO through multi-element rare-earth (RE) substitution and to correlate phase stability with dielectric and magnetic properties.

ENTROPY ENGINEERING — "ORDER FROM DISORDER"

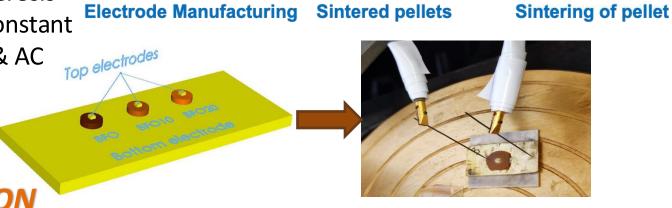
- Entropy-stabilized materials exploit the term $-T\Delta S_{mix}$ in the Gibbs free energy equation $(\Delta G_{mix} = \Delta H_{mix} T\Delta S_{mix})$ to counteract enthalpic destabilization.
- The multi-principal approach creates numerous possible combinations and stoichiometries, offering tunability by simply exchanging or adjusting RE elements.
- This work applies that concept to Bi_{0.9}(RE)_{0.1}FeO₃ (RE = La, Nd, Gd, Eu, Y), representing an entropy oxide designed for improved crystallinity and multifunctional response.

METHOD

Grinding

Composition

 $Bi_{0.9}(RE)_{0.1}FeO_3$, where RE = La, Nd, Gd, Eu, Y (2mol % each)


<u>Synthesis</u>

- Conventional solid-state route.
- > Pre-calcination: 600 °C (1h)
- > Sintering: 950 °C and 1000 °C

Characterization/Analysis

- ✓ XRD → Phase purity, crystallinity
 ✓ SEM → Grain morphology, and
- density

 ✓ VSM → RT magnetic hysteresis
- ✓ LCR meter → Dielectric constant (ε'), loss tangent (tan δ), & AC conductivity (σ)

Calcination

Palletization

ENTROPY CALCULATION

The configurational (mixing) entropy, ΔS_{conf} , was estimated using:

$$S_{conf} = S_{mix} = -R \sum_{n=1}^{i} x_n \ln x_n$$

- ΔS_{mix} is the mixing entropy also called configurational entropy (ΔS_{conf})
- R is the gas constant.
- x_n is the mole fraction of each component present in each site (A-site, B-site and O-site) of sublattice in solid solution and \ln is the natural logarithm.

The x_n values can be calculated based on the stoichiometry of the material. For Bi_{0.9}(RE)_{0.1}FeO₃, with $X_{Bi}=0.9,\ X_Y=X_{Eu}$, X_{La} , X_{Nd} , $X_{Gd}=0.02$ each and $X_{Fe}=1$

Substituting these values into the formula to calculate the mixing/configurational entropy:

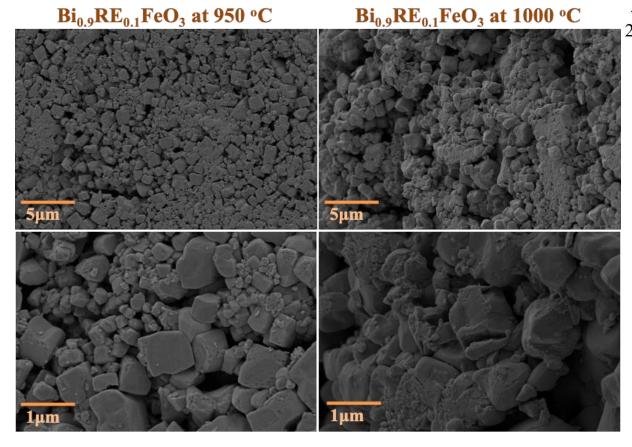
 ΔS_{conf} = 4.048 J mol⁻¹ K⁻¹ = 0.486R = 0.486K_B per A-site atom

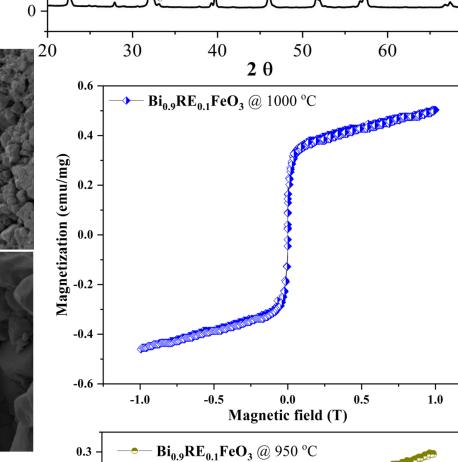
This value places the composition in the **moderate to High entropy oxide** regime, confirming significant A-site configurational disorder contributing to phase stabilization.

As per empirical classification, by Murty et al., $\Delta S_{conf} \geq$ 1.5R classified as "high entropy".

RESULTS & DISCUSSION

Bi_{0.9}RE_{0.1}FeO₃

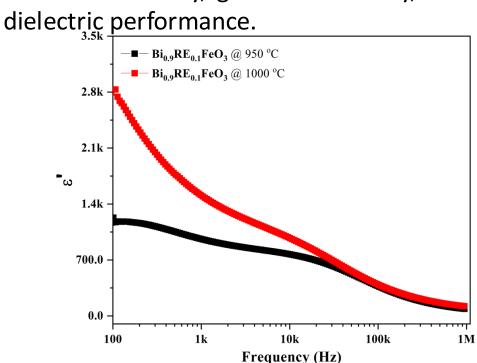

Bi₂₅FeO₄₀

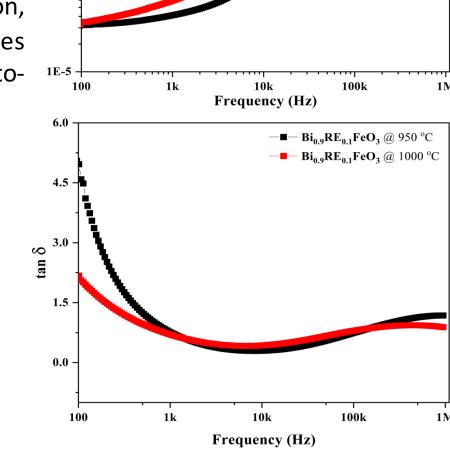

STRUCTURAL ANALYSIS

XRD: Perovskite phase stabilized at both 950°C & 1000°C.

Sharper peaks and reduced impurities at 1000 °C with 97% of BFO phase (rhombohedral (R3c)) → improved crystallinity.

SEM: Densely packed, uniform grains observed at 1000°C indicating reduced porosity


FUNCTIONAL PROPERTIES


Magnetism:

- M–H loops (RT, ±1 T) show weak ferromagnetism.
- Hc: 80–120 Oe; slightly higher at 1000 °C.
- RE-induced **A-site disorder** and **spin canting** disrupt street the cycloid, increasing net moment.
- Entropy-driven structural distortion further enhances magnetic response

Dielectric Response:

- ϵ' increased from ~960 \rightarrow ~1500 at 1 kHz (950 °C \rightarrow 1000 °C). While $\tan \delta$ decreased from 0.77 \rightarrow 0.69 indicating reduced leakage at 1000 °C
- σ_{ac} slightly rose $(4.05 \times 10^{-5} \rightarrow 5.08 \times 10^{-5} \text{ Scm}^{-1})$ perhaps due to Fe²⁺/Fe³⁺ hopping and O₂ vacancies. This means that S_{conf} from multi RE substitution, combined with optimized sintering, enhances structural stability, grain connectivity, and magneto-

Magnetic filed (T)

-■- Bi_{0.9}RE_{0.1}FeO₃ @ 950 °C -■- Bi_{0.9}RE_{0.1}FeO₃ @ 1000 °C

CONCLUSION

- Multi-principal RE substitution effectively stabilizes the perovskite phase of BiFeO₃.
- Entropy-driven structural order enhances dielectric constant, reduces losses, and induces weak ferromagnetism.
- Bi_{0.9}(RE)_{0.1}FeO₃ synthesized at 1000 °C shows a balanced combination of crystallinity, low leakage, and functional performance.
- The approach validates entropy engineering as a scalable route to multifunctional oxides.

FUTURE WORK / REFERENCES

- Extend RE substitution beyond five cations to explore higher-entropy limits.
- Perform temperature-dependent dielectric and magnetic studies.
- Integrate with theoretical modeling of entropy-stabilized perovskites.

References:

- 1. Rost, C.M. *et al.*, *Nat. Commun.* **6**, 8485 (2015).
- Sarkar, A. et al., Nat. Rev. Mater. 3, 187 (2018).
 Aziz, S. et al., Magnetochemistry, 10(8), 60 (2024)
- 4. Witte, R. et al., Phys. Rev. Materials 3, 034406 (2019)