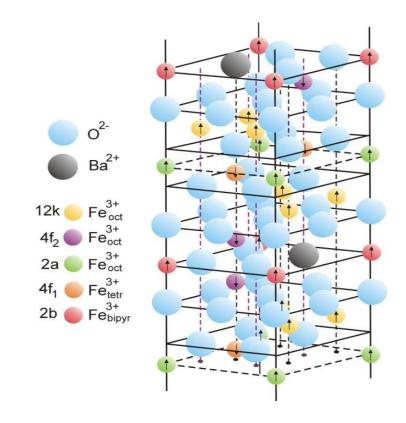
# The 4th International Online Conference on Materials

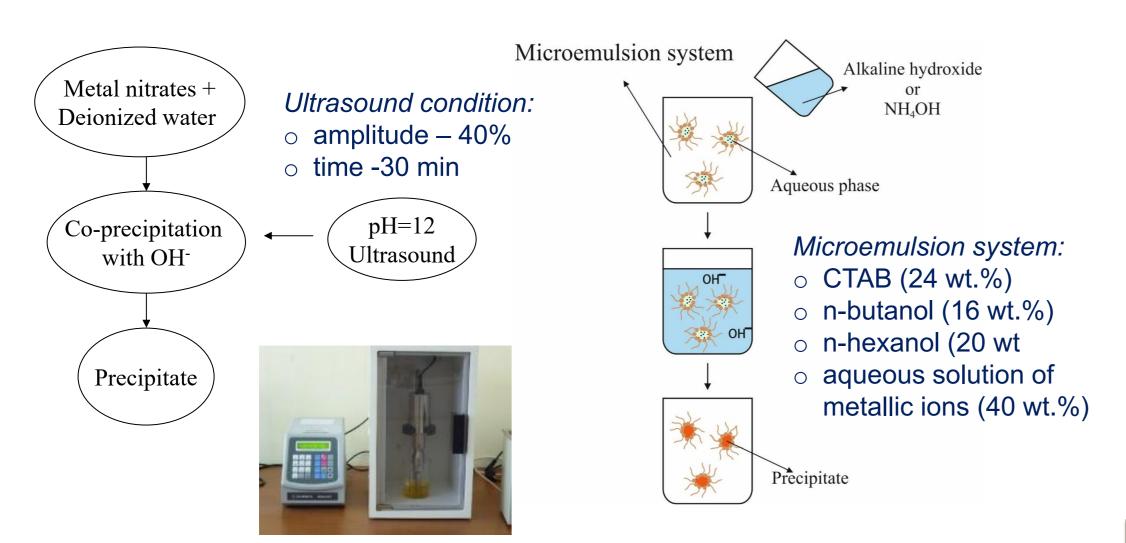


3-6 November 2025 | Online


## Comparative studies of properties of hexaferrites obtained by modified co precipitation methods

T. Koutzarova<sup>1,2</sup>, P. Peneva<sup>1</sup>, S. Kolev<sup>1,3</sup>, K. Krezhov<sup>1</sup>, B. Georgieva<sup>1</sup>, L.-M. Tran<sup>4</sup>, M. Babij<sup>4</sup>, T. Malakova<sup>1</sup>, P. Tzvetkov<sup>5</sup>, B. Vertruyen<sup>6</sup>

- <sup>1</sup>Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
- <sup>2</sup>Center of competence "Smart mechatronic, eco-and energy-saving systems and technologies", Gabrovo, Bulgaria
- <sup>3</sup> Neofit Rilski South-Western University, Blagoevgrad, Bulgaria
- <sup>4</sup> Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland
- <sup>5</sup> Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
- <sup>6</sup> Greenmat, Chemistry Department, University of Liege, Belgium

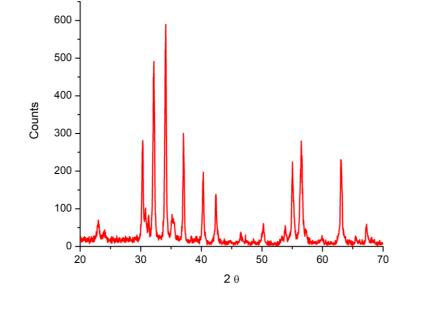

### **INTRODUCTION & AIM**

M-type hexaferrites are among the most important magnetic materials due to their applications as permanent magnets, magnetic recording media, microwave components and devices, etc. We report a study on the correlation between the synthesis procedure on the microstructure and the magnetic properties of BaFe<sub>12</sub>O<sub>19</sub> nanopowders. These were synthesized by two modified co-precipitation methods: microemulsion co-precipitation and sonochemical co precipitation (sonochemistry).



## **METHOD**

#### Sonochemical co-precipitation method Single microemulsion method

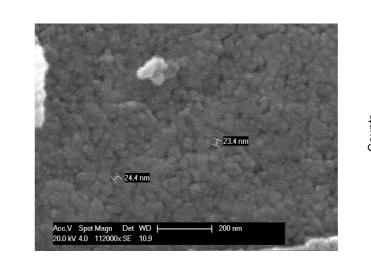


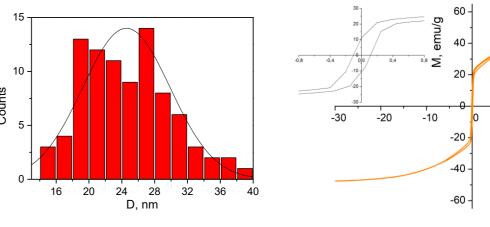

The molar ratio of Ba to Fe is 1:10. The co-precipitation process was caused by adding NaOH at pH12. The precursors are synthesized at  $800^{\circ}\text{C}$  and  $900^{\circ}\text{C}$  to obtain  $\text{BaFe}_{12}\text{O}_{19}$ .

## **RESULTS & DISCUSSION**

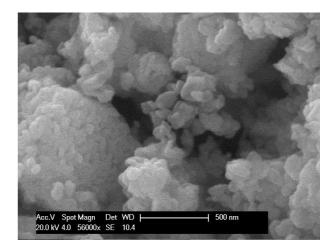
Single phase BaFe<sub>12</sub>O<sub>19</sub>:

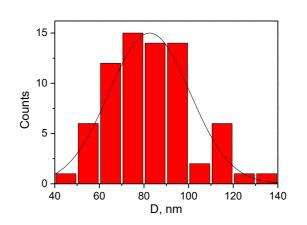
- Synthesis at 800°C and 900°C for sonochemical co-precipitation method
- Synthesis at 900°C for single microemulsion method

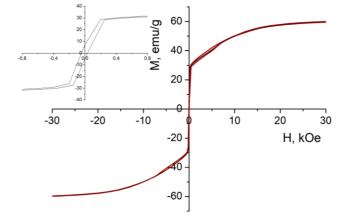




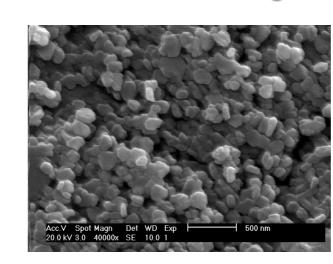



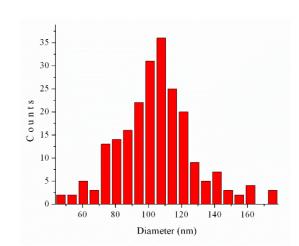


## Sonochemical co-precipitation

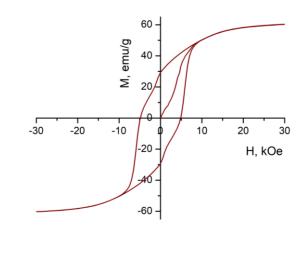





BaFe<sub>12</sub>O<sub>19</sub> - 800°C




BaFe<sub>12</sub>O<sub>19</sub> - 900°C

#### Single microemulsion co-precipitation







BaFe<sub>12</sub>O<sub>19</sub> - 900°C

| Method        | BaFe <sub>12</sub> O <sub>19</sub> | Average particle size (nm) | M <sub>c</sub><br>(emu/g)<br>4.2K | H <sub>c</sub> (Oe)<br>4.2K | M <sub>c</sub> (emu/g) 300K | H <sub>c</sub> (Oe)<br>300K |
|---------------|------------------------------------|----------------------------|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|
| sonochemistry | 800°C                              | 24                         | 70                                | 214                         | 49                          | 103                         |
| sonochemistry | 900°C                              | 84                         | 91                                | 236                         | 61                          | 44                          |
| microemulsion | 900°C                              | 130                        | 90                                | 4390                        | 62                          | 4340                        |

## **CONCLUSION**

The powders prepared by the modified co-precipitation method are very homogeneous and consist of particles with an irregular shape between spherical and plate hexagonal, which is typical for BaFe<sub>12</sub>O<sub>19</sub>. The sonochemical co-precipitation method allows one to obtain single-domain BaFe<sub>12</sub>O<sub>19</sub> with particle size below 100 nm. The powder obtained by single micremulsion co-precipitation has high coercivity, while these obtained by sonochemistry present very narrow hysteresis curves - very low values. In conclusion, depending on the synthesis conditions, powder samples with controlled particle size and shape and desired magnetic properties can be obtained.

## **ACKNOWLEDGEMENTS**

The research was supported by the Bulgarian National Science Fund under contract KP-06-N48/5, research agreements between Greenmat, University of Liege, Belgium and IE-BAS, research agreements between Institute of Low Temperature and Structure Research, PAS and IE-BAS. This research was also funded by the European Regional Development Fund within the OP "Research, Innovation and Digitalization Programme for Intelligent Transformation 2021-2027", Project No. BG16RFPR002-1.014-0005 Center of competence "Smart Mechatronics, Eco- and Energy Saving Systems and Technologies".