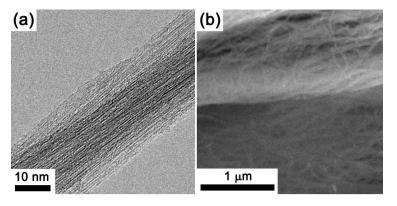
The 4th International Online Conference on Materials

3-6 November 2025 | Online

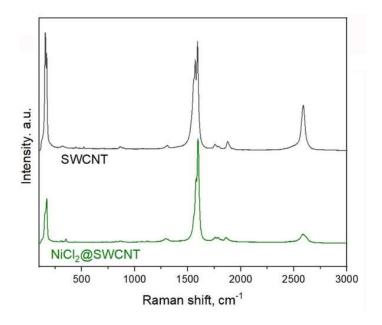
Preparation, and electronic properties of nickel chloride-filled single-walled carbon nanotubes

Marianna V. Kharlamova

Department of Materials Science, Lomonosov Moscow State University, Moscow, Russia


INTRODUCTION & AIM

Single-walled carbon nanotubes (SWCNTs) are filled with metal halides to modify their electronic properties. Metal halides are filled in SWCNTs with a melt method. They have various melting temperatures, and different protocols have been optimized for the filling of SWCNTs with metal halides. Nickel chloride (NiCl₂) is a unique metal halide. Filling SWCNTs with nickel chloride is of large interest to researchers because its encapsulation in SWCNTs leads to p-doping. Nickel chloride has a high melting temperature (1001°C). It is important to develop a method for filling SWCNTs with nickel chloride [1-3].


METHOD

In this work, we submit a filling protocol for SWCNTs with nickel chloride, filling the melted compound in the SWCNTs. The protocol was conducted at 1101°C for 10 hours. The subsequent cooling down period was carried out at rates of 0.02-1°C/min to crystallize nickel chloride in the SWCNTs. The electronic properties of the nickel chloride-filled SWCNTs were investigated with Raman spectroscopy and X-ray photoelectron spectroscopy (XPS).

RESULTS & DISCUSSION

The transmission electron microscopy (a) and scanning electron microscopy (b) images of the nickel chloride-filled SWCNTs.

The Raman spectra of the pristine, and nickel chloride-filled SWCNTs acquired at the laser wavelength of 785 nm.

CONCLUSION

The Raman spectra of the nickel chloride-filled SWCNTs showed large shifts in the peaks and alterations in their intensities. The C 1s XPS spectra showed a shift of the peak in lower binding energies. The observed modifications are the result of the variations in the Fermi level of the nickel chloride-filled SWCNTs. It is shifted down in the filled SWCNTs due to the work function differences between nickel chloride and the SWCNTs.

REFERENCES

[1] M. V. Kharlamova, L. V. Yashina, A. A. Eliseev, A. A. Volykhov, V. S. Neudachina, M. M. Brzhezinskaya, T. S. Zyubina, A. V. Lukashin, Yu. D. Tretyakov. Physica Status Solidi B 2012, V. 249(12), p. 2328-2332.

[2] M. V. Kharlamova. Progress in Materials Science 2016, V. 77, p. 125-211.

[3] M. V. Kharlamova, C. Kramberger. Nanomaterials 2021, V. 11, article number 2863.