The 4th International Online Conference on Materials

3-6 November 2025 | Online

Nanostructure-Based Voltammetric Biosensors: Versatile Point-of-Care Electrochemical Platform Development

¹Derya Bal Altuntaş

¹Department of Bioengineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, Rize 53100,Türkiye <u>derya.balaltuntas@erdogan.edu.tr</u>

INTRODUCTION & AIM

Modern healthcare demands rapid, accurate, and diagnostic technologies. accessible Traditional laboratory-based methods suffer from extended turnaround times, high costs, and centralized infrastructure requirements. Point-of-care diagnostics represent a paradigm shift, enabling immediate clinical decision-making at the patient's Integration bedside. of nanomaterials into electrochemical biosensors has revolutionized capabilities, providing unprecedented sensitivity and selectivity. This research aims to voltammetric nanostructure-enhanced develop biosensing platforms for next-generation medical diagnostics, targeting portable devices suitable for diverse clinical settings [1].

METHOD

Electrochemical sensors were fabricated through layer-by-layer deposition oxide of graphene composites, multi-walled carbon nanotubes, and functionalized gold nanoparticles onto screen-printed electrodes. Nanomaterials were synthesized using modified Hummers method, acid functionalization, and citrate reduction, with comprehensive characterization via cyclic voltammetry, electrochemical impedance spectroscopy, and microscopy techniques. Biorecognition elements including antibodies and aptamers were immobilized through covalent coupling chemistry. Portable point-of-care devices integrated potentiostats, microfluidic miniaturized handling, and wireless connectivity with battery operation for field deployment. Clinical samples including blood, serum, and saliva were analyzed for cardiac markers, cancer biomarkers, inflammatory cytokines, and infectious disease indicators, with performance validated against established reference methods.

RESULTS & DISCUSSION

The nanostructure-modified electrodes exhibit superior electrochemical performance multiple through increased electroactive surface mechanisms: area, accelerated electron transfer kinetics, electrocatalytic effects, and enhanced analyte accumulation. biosensing technology represents significant advancement toward precision medicine and equitable healthcare access. Portable devices enable deployment from specialized medical centers to resource-limited settings. Ongoing developments in regulatory compliance and manufacturing scale-up position this technology for global clinical translation, with potential to transform clinical practice through rapid, accurate, and accessible medical testing.

CONCLUSION

research successfully demonstrates innovative This nanostructure-enhanced voltammetric biosensing platforms for rapid medical diagnostics. Key achievements include 10-100× sensitivity enhancement, ultra-low detection limits (pM-fM range), rapid analysis (5-15 minutes), portable design for diverse healthcare settings, and cost-effective manufacturing. The nanostructure-modified electrodes exhibit superior electrochemical performance through multiple mechanisms: increased electroactive surface area, accelerated electron transfer kinetics, electrocatalytic effects, and enhanced analyte accumulation. biosensing technology represents significant advancement toward precision medicine and equitable healthcare access. Portable devices enable deployment from specialized medical centers to resource-limited settings. Ongoing developments in regulatory compliance and manufacturing scale-up position this technology for global clinical translation, with potential to transform clinical practice through rapid, accurate, and accessible medical testing.

FUTURE WORK / REFERENCES

[1] Derya Bal Altuntas, Yudum Tepeli and Ulku Anik, Graphene-metallic nanocomposites as modifiers in electrochemical glucose biosensor transducers. 2016 2D Mater. 3 034001