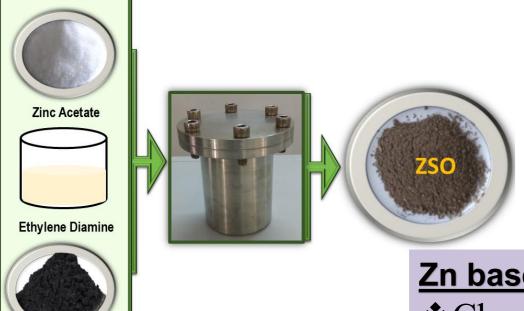
The 4th International Online Conference on Materials

3-6 November 2025 | Online

Novel Zinc Selenate Ternary Nanomaterial; Efficient Platforms for Photocatalysis and Antibacterial Applications


Bhabhina Ninnora Meethal

Department of Chemistry, R. Sankar Memorial SNDP Yogam Arts & Science College, Kozhikode, Kerala-673305

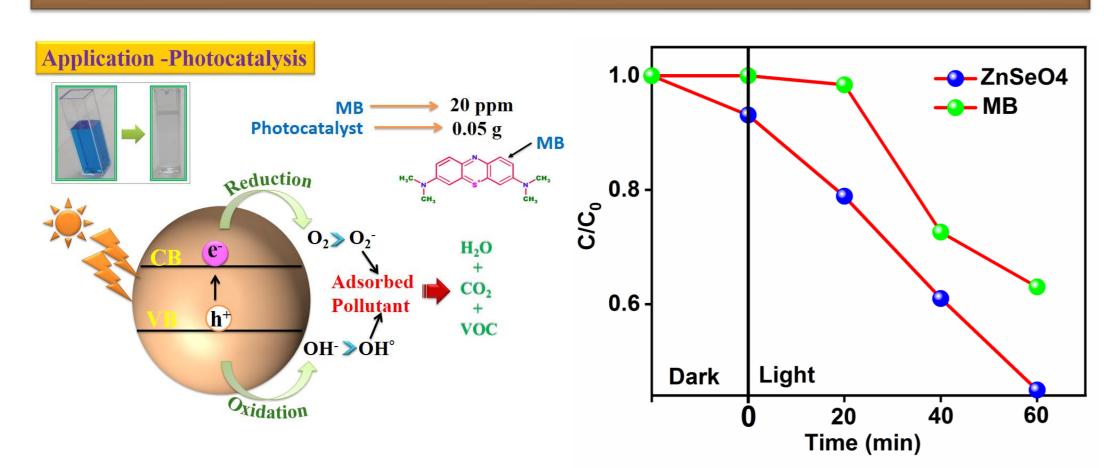
INTRODUCTION & AIM

- ✓ Zinc selenate nanomaterials were synthesized as novel material
- ✓ Minimum precursors were used for synthesis
- ✓ Ensured the formation of ZnSeO₄ by characterisations
- ✓ Investigate the photocatalytic activity of newly synthesised ZnSeO₄
- ✓ Investigate the antibacterial activity against E. Coli bacteria

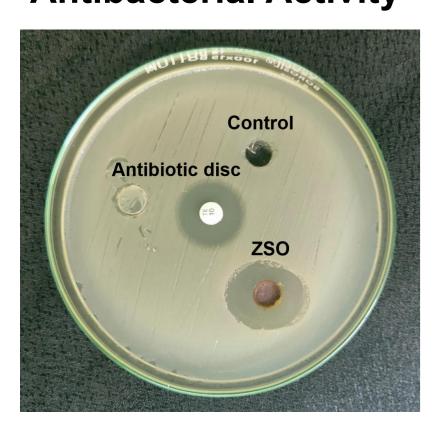
METHOD - Solvothermal

Zn based compounds

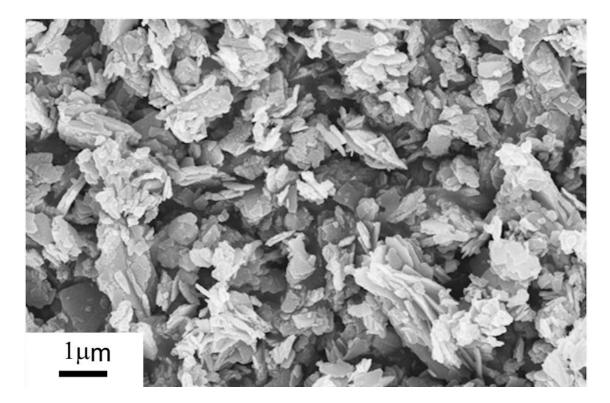
- Cheap production method
- High photon absorption cross section
- *Rapid generation of electron-hole pairs


Ethylene Diamine

- Solvent used for the synthesis
- $C_2H_4(NH_2)_2$
- Both reducing and capping functions
- Nonpolar liquid


Advantages of Solvothermal Synthesis

- High product purity and homogeneity
- Unique pressure-temp interaction during synthesis
- **❖**Single step synthesis
- **❖**Fast reaction time
- ❖ Narrow particle size distribution


APPLICATIONS

Antibacterial Activity

SEM after Photocatalysis

RESULTS & DISCUSSION DRS **XRD FTIR** JCPDS - 46-0764 2000 3000 Wavenumber (cm⁻¹) SEM (a) & Elemental Mapping (b) **EDAX** 6000 Energy (KeV) **Tauc Plot Valance Band & DoS** ZSO - 1.83 eV CB -3.22eV 1.83 eV 7.31 eV 5.92 eV **VB** Binding Energy (eV) hν (eV) **XPS** Zn 2p 0 1s 1040 1020 1030 1050 525 530 Binding Energy (eV) **Binding Energy (eV)** Se 3d

CONCLUSION

Binding Energy (eV)

CONCLUSION

- ✓ ZnSeO4 nanoparticle was synthesised by solvothermal method
- ✓ The newly designed ZnSeO4 shows photocatalytic degradation of MB about 70%
- ✓ Morphology of sample retained after photocatalysis
- ✓ Antibacterial activity of ZnSeO4 exhibit significant growth inhibitory activity against E. coli and the activity is remarkably high compared with standard tetracycline (antibiotic disc).

REFERENCES

Niveditha CV, Nandana M, Devika M, Alanta MT, Meera Das KK, Aswani K, Bhabhina NM*, Chemistry Select, (2025), 10, e01676

Rajita R, Sindhu S, Bhabhina NM*, Int. J. Mater. Res. (2023); aop , 1-7

Bhabhina NM, Abdul FP, Jabeen FMJ, Dharsana MV, Sindhu S*., Mater & Design, 165 (2019) 107600

Bhabhina NM, Nijisha P, S. Sindhu*, Mater. & Design., 130, (2017), P426-432

Bhabhina NM, Rajita R, Sindhu S*., Appl. Nanosci. 8 (6) (2018) p1545-1555 Bhabhina NM, Sindhu S*., Chemistry Select 3 (2018), 13345–13354