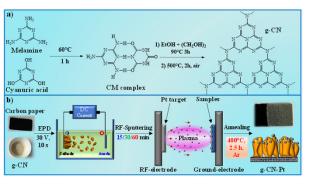
The 4th International Online **Conference on Materials**

3-6 November 2025 | Online

Development of g-CN-Pt electrocatalysts for Vis-light activated ethanol electrochemical valorization

Visit our group website:


Davide Barreca^{1,*}, Mattia Brugia², Mattia Benedet^{1,2}, Gian Andrea Rizzi^{1,2}, Alberto Gasparotto^{1,2}, Oleg I. Lebedev³, Chiara Maccato^{1,2}

- 1 CNR-ICMATE and INSTM, DiSC, University of Padova (Italy); E-mail: davide.barreca@cnr.it;
- ² DISC, University of Padova and INSTM (Italy); ³ Laboratoire CRISMAT, ENSICAEN-CNRS UMR6508, Caen Cedex 4 (France).

INTRODUCTION & AIM

- Exfoliated graphitic carbon nitride (g-CN) was immobilized on C paper substrates by electrophoresis, and decorated with ultra-low amounts (≈µg/cm²) of Pt nanoparticles (NPs) by cold plasma sputtering
- Optimization of processing conditions allowed a fine tuning of Pt NPs size, loading and distribution and a controlled tailoring of g-CN/Pt interfacial in
- The prepared electrodes were used to perform the Ethanol Oxidation Reaction (EOR) in alkaline solution \rightarrow appealing not only for the valorization of biomass-derived ethanol aimed at H2 production, but also in direct ethanol fuel cells (DEFCs) for clean energy
- The best system yielded a Tafel slope of 96 mV/dec and a current density of 0.58 mA/cm² at 1.55 V vs. the reversible hydrogen electrode (RHE). These results and the good system service life recommend the developed materials as attractive electrocatalysts for ethanol valorization using electrical energy from renewable sources

METHOD

(a) Synthesis of g-CN powders; deposition, functionalization and thermal treatment to obtain C paper supported g-CN-Pt specimens. The target specimens are labeled as gCN-Pt(X) [X = duration of Pt sputtering process (min)].

g-CN & Pt presence

(∝ Sputtering time!)

Partially uncovered substrate

-NH_v occurrence (N₂):

↑ photoactivity

C-N=C groups on g-CN

promote Pt adhesion

& dispersion, also

preventina NPs

agglomeration

RESULTS & DISCUSSION

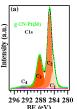
XPS

C1s and (b)

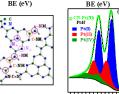
structure, in which

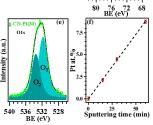
peaks for g-CN-Pt(30). (c) Sketch of gCN

different non-equivalent


marked, (d) Pt4f and (e)

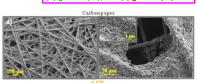
O1s peaks for q-CN-


Pt atomic


(at.%) vs.

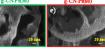
N1s

6 292 288 284 280 BE (eV) 404 400 BE (eV)

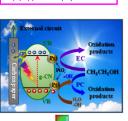

✓ q-CN particles (5-10 µm) on C paper fibers

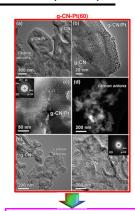
<5 nm Pt NPs (bright spots)</p> ✓ Pt dispersion: efficient a-CN/Pt

percentage


sputtering time

C paper, (b) g-CN, (c) g-CN-Pt(15), q-CN-Pt(30), and (e) q-CN-Pt(60)

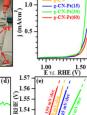



Functional characterization

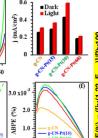
Photograph of the used cell. (b) LSV curves in KOH 0.5 M+EtOH 1.3 M under irradiation. (c) Current density at 1.55 V vs. RHE during EOR tests. (d) Chronoamperometry for g-CN-Pt(15) and g-CN-Pt(30) at 1.55 V vs. RHE under illumination. The arrow marks EtOH introduction. (e Tafel plots under irradiation, corresponding to LSV curves in (b). (f) ABPE (%) curves.

Sketch of synergic electrocatalytic (FC) photocatalytic (PC) contributions to EOR process for g-CN-Pt systems. represented with a Pt(0) core (yellow) and a partially oxidized PtO_x shell (grey).

HAADF-STEM) images of g-CN-Pt(30), showing: paper/C interface; (b) C onions; flake-like g-CN & ED pattern; (d) g-CN & ginterface. HAADF-STEM overview and (f) magnified image of g-CN/Pt nanostructures of g-CN-Pt(30). FDXS-STEM overlaid image (C blue; N, green; Pt, red). (h) BF HR-TEM overview g-CN/Pt intermixed region. (i) ED pattern from g-CN/Pt (superposition of g-CN & Pt contributions). Magnified image of the region highlighted by the white box in pattern of the region evidenced by the white



BF-TEM images of g-CN-D). (c) HAADF-STEM image Pt(60). g-CN/Pt and ED pattern (superposition of g-CN and Pt contributions). (d) HAADF-STEM image of C onions. (e) BF-TEM image of g-CN/C onions interface. (f) BF-TEM image of g-CN and ED pattern, dominated by the sole g-CN (002) ring.



0.15

£ 1.53

1.52

1.51 2.5 Time (h) 1.00 1.20 E vs. RHE (V) Log(j[mA/cm²]) (b, c) catalytic activities: g-CN-Pt(60) < g-CN < g-CN-Pt(15) < g-CN-Pt(30) (beneficial g-CN/Pt NPs interactions)

(d) CA in bare KOH solution (30') and KOH + EtOH aqueous solutions. Upon addition of EtOH, ↑↑ j: ♠ activity towards EOR than OER. Subsequent j ♠: EtOH consumption down to ≈ constant j: diffusion-limited process

Tafel slopes: g-CN > g-CN-Pt(60) > g-CN-Pt(15) > g-CN-Pt(15) $Pt(30) \Rightarrow g-CN-Pt(30)$ was the best system \Rightarrow ABPE curves in KOH + EtOH solution

g-CN-Pt(30): performances compare favorably with similar ectrocatalysts, and even with various Pt/C systems,

CONCLUSION

- Fabrication of heterocomposites based on Pt NPs and g-CN through: i) electrophoresis of exfoliated g-CN on C paper; ii) functionalization with ultra-low amounts of Pt NPs via RFsputtering from Ar plasmas.
 - Key outcomes include: 1) prevention of Pt NP agglomeration, g-CN matrix maintaining high Pt NPs dispersion; 2) improved charge separation upon Vis light irradiation, leading to better reactivity and stability against poisoning.
- ⊃ effective EOR performances can be achieved with minimal Pt content, crucial to develop advanced electrocatalysts for clean energy production. This research could pave the way for photo-functional systems in chemical and solar energy conversion.

REFERENCES

- M. Brugia, D. Barreca et al., ChemSusChem, 17, e202401041 (2024). M. Brugia, D. Barreca et al., Surf. Sci. Spectra, 31, 024002 (2024).

interfacial contact