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The global transition toward a sustainable, carbon-neutral energy future hinges | | | - | —N_ | %4 B o T e e m 5
critically on the large-scale production and utilization of green hydrogen — a B R e e @ 1 () () o
. . . . . . . d)[c A | g matiy SRS
versatile, zero-emission energy carrier with unparalleled gravimetric energy (ﬁ ” o A —
density. Among the available pathways, water electrolysis powered by renewable fio /
electricity stands out as the most promising technology for scalable and truly S // U

1.2 14
Potential (V vs. RHE)

810 800 790 780 740 730 720 710 534 532 530 528 10 .
Binding energy (eV) Binding energy (eV) Binding energy (eV) Potential (V vs. RHE) log[j (mA em™)]

green hydrogen generation. However, the widespread deployment of electrolyzers

is still hampered by high system costs and efficiency losses, primarily due to the @ |- (h), J/N\kﬂ/)\\ |
sluggish kinetics and poor durability of the oxygen evolution reaction (OER) at Figure 3. Phase evolution and chemical state analysis. Py 5 w__,\ﬂ/m ol
S ? pvee g § Ul Fol

(a) XRD patterns of Co(OH),, CoOOH, and Fe-CoOOH. '
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of (c) Co 2p in Co(OH), and CoOOH, (d) Co 2p in

CoOOH and Fe-CoOOH, (e) Fe 2p in Fe-Co(OH), and Figure 4. Effect of Fe immersion time on OER performance.

_ (a) LSV (b) Tafel (c) EIS (d) CV. (e,f) Comparison of LSV and
Fe-CoOOH, and (f) O 1s in CoOOH and Fe-CoOOH. Tafel performance among CoOOH, Fe@Ni, bare Ni, and Fe-

CoOOH@Ni. (g) EIS comparison of all catalysts. (h)
Schematic diagram of RDS change

the anode — a complex four-electron/proton transfer process that imposes
significant overpotentials and material degradation under industrially relevant
operating conditions.

Inspired by these insights, we herein report a scalable, calcination-free, interfacial
engineering strategy to fabricate vertically aligned Fe-doped CoOOH (Fe—CoOOH)
nanosheets directly on nickel foam (Fe—CoOOH@Ni) via pulsed electrodeposition
of Co(OH),, followed by Ilow-temperature Fe?*" adsorption and controlled

/ OH
e K RDS
TN
o Hove
of H

\ / "
e f
. @
AON
" o
}\ C
OH H 1

nnnnn

electrochemical activation. This approach enables precise spatial and chemical (@) ?:

control over Fe incorporation, triggering a well-defined surface reconstruction 5

that yields a semi-crystalline, microcrack-enriched nanostructure with optimized Figure 5. Long-term stability and benchmarking.
electronic configuration and maximized active site exposure. The resulting 3 — (a) LSV curves before and after 150 CV cycles. (b—
catalyst demonstrates exceptional OER activity (n =283.7 mV @ 100 mA cm™) and 0o - oo ¢) Poststability SEM images at different

durability, driven by Fe-induced modulation of the Co valence state, reduced g
charge-transfer resistance, and RDS alteration. This work provides a
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maghnifications. (f) Chronopotentiometric stability

comparison with recently reported Co-based OER
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CONCLUSION

In summary, we have developed a facile, scalable, and calcination-free interfacial
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engineering strategy to construct highly efficient and durable Fe-doped CoOOH

Ni Fe-Co(OH),@Ni Fe-CoOOH@Ni

nanosheets (Fe—CoOOH@Ni) directly on nickel foam via in situ electrochemical

restructuring. Mechanistic investigations reveal that the superior performance
Electrochemical Restructuring to Fe-CoOOH@N:i: g g P P

The Fe-CoOOH@Ni electrode was synthesized through a three-step process: first,
nickel foam was cleaned and used as a substrate; second, a Co(OH), precursor
was electrodeposited onto it via cyclic voltammetry in a Co(NO3), solution; third,
iron was incorporated by immersing the electrode in an FeSO, solution at 80 °C,

stems from the synergistic effects of Fe doping and in situ restructuring: (i) Fe
incorporation modulates the local electronic structure of Co sites, promoting the

formation of catalytically critical high-valent Co** species; (ii) the restructuring

followed by electrochemical restructuring in 1M KOH via CV to form the final Fe-

rocess generates abundant surface defects and microcracks, enhancing mass
CoOOH@Ni catalyst. P 9 9

transport and exposing more active sites; and (iii) the optimized Co-O-Fe

interfacial configuration alters the OER rate-determining step and facilitates rapid

RESULTS & DISCUSSION

charge transfer kinetics. This work not only provides a high-performance, cost-
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effective electrocatalyst for green hydrogen production but also establishes a
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generalizable paradigm for designing advanced electrocatalytic interfaces
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through controlled in situ surface restructuring. The insights into the dynamic
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evolution of surface chemistry and electronic structure during activation offer
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valuable guidance for the rational development of next-generation energy
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conversion materials.
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Figure2.0Optimization of CoOOH@NIi electrodeposition
cycles. (a) LSV (b) Tafel (c) CV (d) EIS (e) Active site

density as a function of cycle number. (f) TOF (g)

Figure1.Morphological and structural characterization
of restructured Fe-CoOOH@Ni.(a-d)HRTEM (e)SAED
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Chronopotentiometric stability at 100 mA cm™. (h)
Post-stability SEM image.
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