The 4th International Online Conference on Materials

3-6 November 2025 | Online

Synthesis and Characterization of Solid-State Electrolyte NASICON (Na₃Zr₂Si₂PO₁₂) from Different Precursor Sources

Ritom Bid*^{1,3}, Himanshu Bhardwaj^{2,3}, M. Dinachandra Singh³
¹Department of Physics, Presidency University, Kolkata, India

²Vikramajit Singh Sanatan Dharma College (VSSD College), Chhatrapati Shahu Ji Maharaj University, Kanpur, India ³Student Research Exposure Lab (SUREELA), Shiksha Sopan, Kanpur, India

INTRODUCTION & AIM

Introduction:

- Rapid growth of renewable energy and electric vehicles increases demand for safe and efficient energy storage.
- Lithium-ion batteries (LIBs) dominate but face issues like high cost, scarcity of Li, and safety risks.
- Sodium-ion batteries (SIBs) are promising due to low cost, abundant Na resources, and environmental friendliness.
- Finding a suitable solid-state electrolyte is crucial for improving SIB performance and safety.
- NASICON-type materials (Na_{1+x}Zr₂Si_xP_{3-x}O₁₂) offer high ionic conductivity (~10⁻³ S/cm), thermal stability, and chemical robustness.
- Among them, Na₃Zr₂Si₂PO₁₂ (NZSP) is a leading candidate for solid-state sodium-ion batteries.
- The purity of precursor chemicals strongly influences the phase formation, microstructure, and conductivity of NASICON.

Aim:

- 1. To synthesize NASICON (NZSP) using chemicals from high-purity-grade supplier and economical but low-purity-grade supplier.
- 2. To compare their structural and electrochemical properties.
- 3. To assess whether low-cost chemicals (Sample-B) can match high-purity chemicals (Sample-A).

METHOD

Steps:

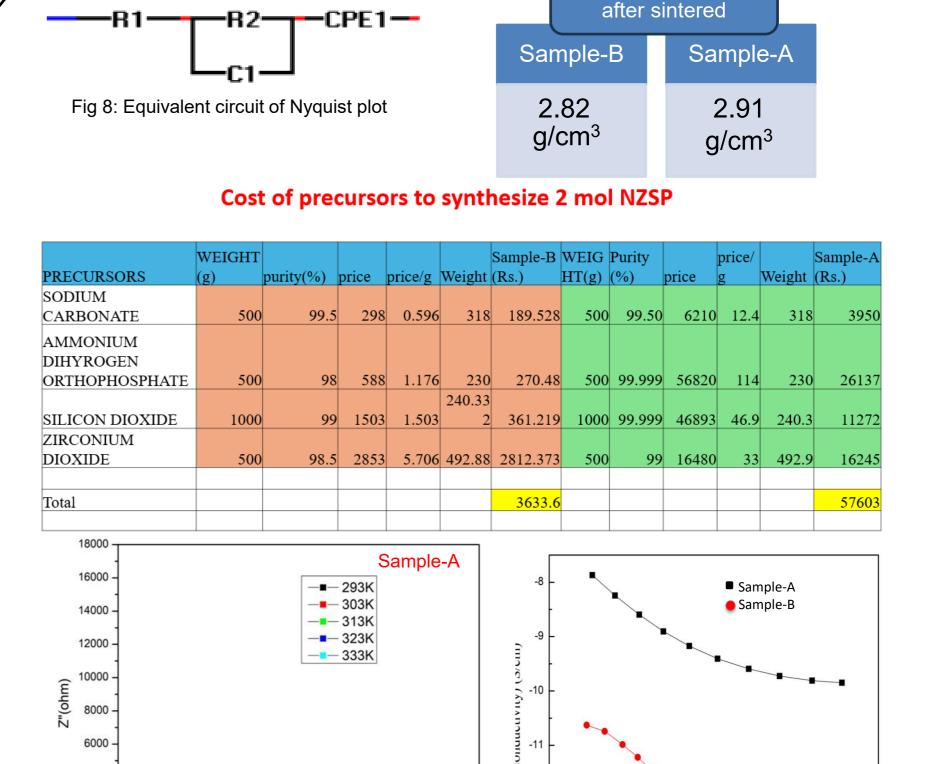
1.Precursors: Na₂CO₃, ZrO₂, SiO₂, NH₄H₂PO₄ 2.Stoichiometry: Mixed in molar ratio 3:4:4:2

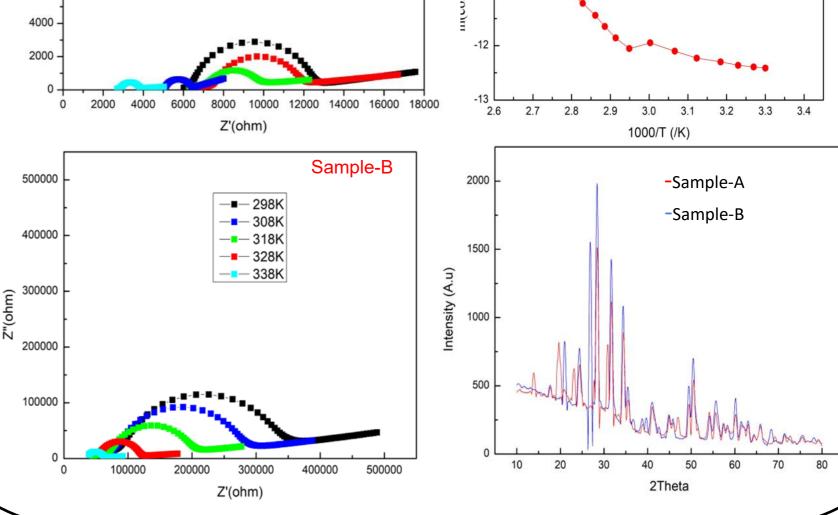
3.Grinding: 3 hours with ethanol using mortar–pestle

4.Pre-heating: 100 °C for 12 h **5.Calcination:** 1000 °C for 10 h

6.Pelletizing: 13 mm die under 250 kg/cm² for 15 min

7.Sintering: 1050 °C for 9.5 h


8. Characterization:


1. Electrochemical Impedance Spectroscopy (EIS)

2. X-Ray Diffraction (XRD)

RESULTS & DISCUSSION

Density of the pellets

CONCLUSION

- NASICON (Na₃Zr₂Si₂PO₁₂) was synthesized using high-purity source and low-purity source precursors via the solid-state reaction method.
- Sample-A showed lower grain boundary resistance, higher density (2.91 g/cm³), and purer NZSP–ZrO₂ phases.
- Sample-B exhibited higher resistance, lower density (2.82 g/cm³), and greater porosity with an impurity sodium silicate phase.
- These results confirm that precursor purity significantly affects microstructure, porosity, and ionic conductivity.
- Overall, high-purity precursors source yield denser, purer, and more conductive NASICON than low-purity source.

FUTURE WORK / REFERENCES

5. A.C. Lazanas, M.I. Prodromidis, ACS Meas. Sci. Au, 3 (2023) 162–193.

- 1. R. Rajagopalan *et al.*, *Energy Storage Mater.*, **34** (2021) 171–193.
- 2. F. Lalère et al., J. Power Sources, 247 (2014) 975-980.
- 3. Z. Jian et al., J. Phys. Chem. C, **124** (2020) 9161–9169.
- 4. M.D. Singh et al., Chem. Eng. J., 489 (2024) 151330.