The 4th International Online Conference on Materials

3-6 November 2025 | Online

Characterization of additively manufactured parts of Inconel 718

Kalyani Lohar, Dr. Santosh Kumar Sahu, Dr. Punyapriya Mishra

Department of Mechanical Engineering

Veer Surendra Sai University of Technology, Burla, Odisha, India

INTRODUCTION

- Inconel 718 is a high-strength, corrosion-resistant nickel-based superalloy.
- Inconel 718 contains a high Nb concentration and is primarily strengthened by γ "-Ni₃Nb and slightly by γ '-Ni₃Al, which precipitate coherently in γ matrix.
- DMLS involves using a laser to melt and fuse metal powders.

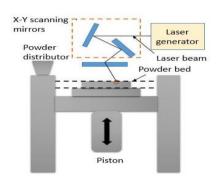


Fig. 1. Schematic diagram of DMLS Process

OBJECTIVES

- Analyze the microstructure of Inconel 718 parts produced through powder bed fusion
- Evaluate the mechanical properties
- Identify the factors affecting the microstructure and mechanical properties.
- Contribute to the knowledge base on additive manufacturing of Inconel 718 parts and provide insights into the potential applications of this technique in the aerospace, energy, and biomedical industries.
- Investigate the performance of Inconel 718 parts under different loading conditions, such as creep, fatigue, and corrosion resistance.

METHODOLOGY

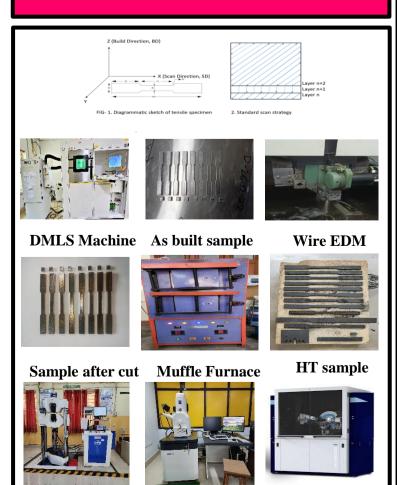


Fig. 2. Experimentation and characterization

RESULTS

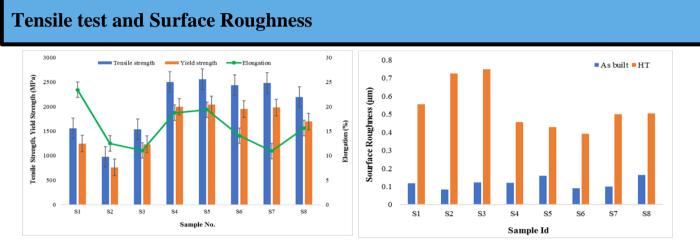


Fig. 3. Tensile test and surface roughness of Inconel 718

Fig. 4. XRD pattern and FESEM micrograph with grain size distribution plot of Inconel 718

Fractography Analysis

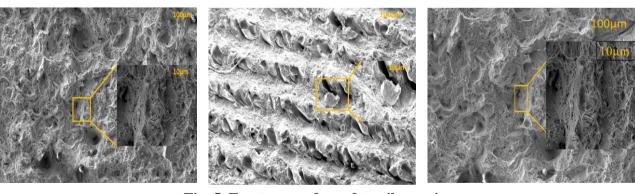


Fig. 5. Fracture surface of tensile specimen

Surface Morphology

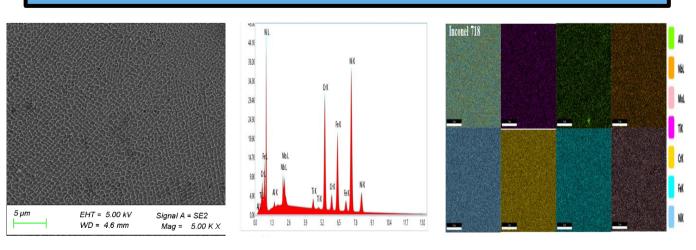
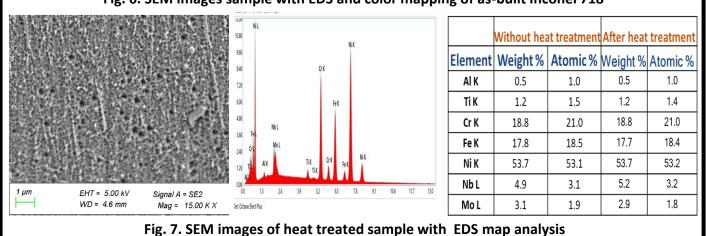



Fig. 6. SEM images sample with EDS and color mapping of as-built Inconel 718

CONCLUSIONS & FUTURE SCOPE

- Heat treatment processes increased the tensile strength and decreased the ductility of L-PBF IN718 at room temperature.
- Negligible change in overall diffraction pattern.
- Dendrite structure was developed in a direction parallel to the build direction.
- The columnar pattern in the XY cross-section along few characteristic directions corresponded to the scan rotation.
- Performing mechanical and microstructural tests using other variable parameters can be analyzed.
- The effect of corrosion and erosion test can be performed.
- The conventional machining Inconel 718 can be compared with DMLS fabricated Inconel 718.

REFERENCES

- Sharma, S., Palaniappan, K., Mishra, V.D. *et al.* Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion. *Metall Mater Trans A* **54**, 270–285 (2023). https://doi.org/10.1007/s11661-022-06867-z.
- Huynh, T., Mehta, A., Graydon, K. et al. Microstructural Development in Inconel 718 Nickel-Based Superalloy Additively Manufactured by Laser Powder Bed Fusion. Metallogr. Microstruct. Anal. 11, 88–107 (2022).

https://doi.org/10.1007/s13632-021-00811-0.

• Cheng, Q., Yan, X. Effect of Scanning Speed on Microstructure and Properties of Inconel 718 Fabricated by Laser Powder Bed Fusion. *Trans Indian Inst Met* **76**, 997–1006 (2023). https://doi.org/10.1007/s12666-

https://doi.org/10.1007/s12666-022-02816-x.

Praveen Kumar, V., Vinoth Jebaraj, A. Microscale investigations on additively manufactured Inconel 718: influence of volumetric energy density on microstructure, texture evolution, defects control and residual stress. *Appl. Phys. A* **129**, 370 (2023). https://doi.org/10.1007/s00339-023-06642-w.