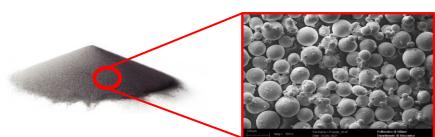
The 4th International Online Conference on Materials

3-6 November 2025 | Online

Laser Powder Directed Energy Deposition of Ti-21S: Microstructure, Mechanical Properties, and Corrosion Resistance

Alireza Sohrabi1, Amir Behjat2,3*, Federico Mazzucato4, Anna Valente4, Arash Fattah-alhosseini 5, Razieh Chaharmahali5, Luca Iuliano2,3, Abdollah Saboori2,3

1 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 1029, Torino, Italy
2 Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
3 Integrated Additive Manufacturing Center (IAM@PoliTo), Politecnico di Torino, Corso Castelfidardo 51, 10129 Torino, Italy
4 Department of Innovative Technologies, University of Applied Science and Arts of Southern Switzerland (SUPSI), Via La Santa 1, 6962,
Lugano, Switzerland


5 Department of Materials Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran *Corresponding author: amir.behjat@polito.it

INTRODUCTION & AIM

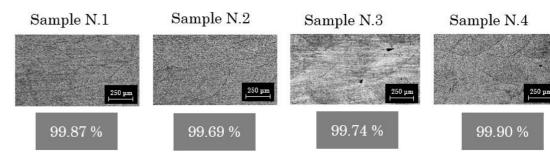

- \blacksquare Ti-21S is a β-titanium alloy with high strength, low density, and excellent corrosion resistance, suitable for aerospace and biomedical use.
- Conventional manufacturing is challenging due to poor weldability and high thermal distortion, leading to increased cost.
- LP-DED allows precise melting and layer-by-layer fabrication, enabling complex geometries with reduced material waste.
- Process parameters directly affect defects, microstructure, mechanical properties, and corrosion behavior.
- Aim: Optimize LP-DED parameters to produce dense, uniform Ti-21S parts and evaluate their microstructure, hardness, and corrosion resistance.

METHOD

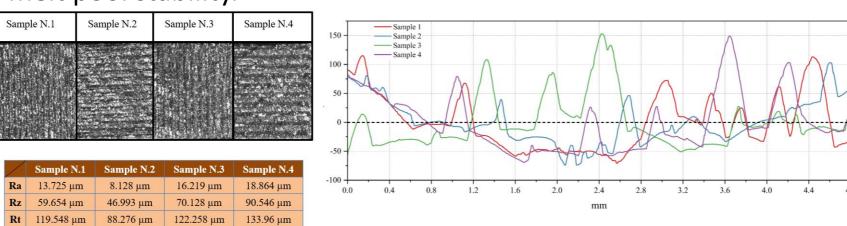
 Material: Gas-atomized Ti-21S β-metastable powder (45–105 μm, argon atomized) was used as feedstock.

- Process: Samples were produced via Laser Powder Directed Energy Deposition (LP-DED) under argon shielding with 200°C substrate preheating.
- **Build Strategy:** Multi-layer 5 mm cubes were fabricated using a 0°/90° raster deposition pattern.

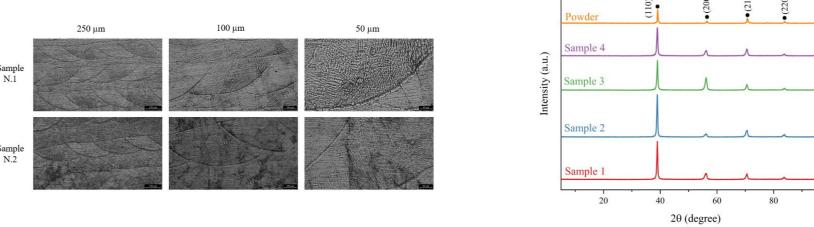
Sample N.1 & N.1F	Sample N.3 & N.3R
P 400	P 500
F600 P 400	F600 P 500
F600	F600
Sample N.2 & N.2F	Sample N.4 & N.4R
P 400	P 500
F500 P 400	F500 P 500
F500	F500


■ Parameter Matrix: Four processing conditions were applied by varying laser power (400–500 W) and scan speed (500–600 mm/min), with two repetitions for each set.

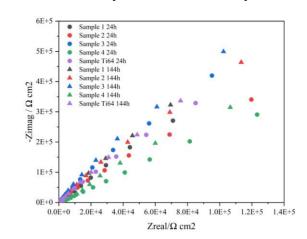
	Power (W)	Speed (mm/min)	H.D (mm)	dz (μm)	Raster
S N.1 & N.1R	400	600	0.479	186	0°/ 90°
S N.2 & N.2R	400	500	0.501	151	0°/ 90°
S N.3 & N.3R	500	600	0.589	170	0°/ 90°
S N.4 & N.4R	500	500	0.605	201	0°/ 90°


■ Characterization: Archimedes density, surface roughness, SEM, XRD, microhardness, and electrochemical corrosion tests were conducted to evaluate microstructure and performance.

RESULTS & DISCUSSION


■ Density: All samples achieved >99.7% relative density, indicating defect-minimized LP-DED processing; the optimized parameter set reached ~99.9%.

■ Surface Quality: Surface roughness varied across builds, with sample N.2 showing the lowest Ra, demonstrating the effect of scan speed on melt pool stability.


■ **Microstructure:** XRD and OM results confirmed a fully β-phase microstructure, typical for metastable Ti-21S produced under rapid solidification conditions.

Mechanical Properties: Microhardness values ranged between $^{\sim}330-390$ HV, with sample N.4 achieving the highest hardness, correlating with refined β grains.

_			
S.	Sample Number	HV	SD
	Sample N.1	357	24.4741
	Sample N.2	378	12.5982
	Sample N.3	332	19.3647
	Sample N.4	388	15.4299

Corrosion Resistance: Electrochemical tests in 0.9 wt.% NaCl showed excellent passivation behavior and high charge-transfer resistance (Rct) across all samples, with performance comparable or superior to Ti-6Al-

4V.

Sample Number	Time (h)	$R_{ct}(k\Omega)$
Sample N.1	24	5.96 × 10 ⁹
	144	6.52 × 10 ⁹
Sample N.2	24	6.86 × 10 ⁹
	144	1.06×10^{10}
Sample N.3	24	8.40 × 10 ⁹
	144	1.11×10^{10}
Sample N.4	24	6.37 × 10 ⁹
	144	6.77 × 10 ⁹
Sample Ti64	24	6.16 × 10 ⁹
	144	6.61 × 10 ⁹

CONCLUSION

- DED optimized processing parameters resulted in enhanced density, hardness and uniform microstructural features across samples.
- Corrosion testing confirmed robust passivation behavior, indicating that LP-DED Ti-21S maintains excellent environmental durability.

FUTURE WORK / REFERENCES

- Investigate the effect of heat treatment on β-phase stability and grain refinement.
- Scale up LP-DED parameters to larger component geometries for industrial validation.