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Abstract: The Stirling engine is an external-combustion engine that utilizes a compressible 
working fluid. The Stirling engine can be very efficient, having the same theoretical energy 
efficiency as the Carnot engine for transforming heat to work. It is environmentally 
advantageous and can mitigate CO2 emissions from combustion. Various parameters affect 
the performance of the Stirling engine and are considered in optimization and designing 
activities. Among these factors, torque and power have the greatest effect on the robustness 
of the Stirling engine, so they need to be determined with low uncertainty and high 
precision. In this article, the distribution of torque and power are determined using 
experimental data. Specifically, a novel polynomial approach is proposed to specify torque 
and power, on the basis of previous experimental work. This research addresses the question 
of whether GMDH (group method of data handling)-type neural networks can be utilized to 
predict the torque and power based on determined parameters. 
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1. Introduction  

Reducing use of fossil fuels is a significant energy quests of today’s world, and many researchers are 
seeking ways to harness alternative energy resources and developing enhanced energy conversion 
systems. 

An important energy conversion system which can contribute to these goals is the Stirling engine, 
which can generate electrical power with high thermal efficiency. It is an external combustion engine 
which works within an extensive temperature interval and provides opportunity of enhanced 
combustion control. Stirling engines works utilize expansion and compression processes of a working 
fluid (e.g., gases such as hydrogen, helium and air ) [1,2]. The efficiency of a Stirling engine varies 
with charge pressure, mechanical connections, temperature difference between the cold and hot 
reservoirs, regenerator efficiency, heat transfer coefficient, impermeability ratio and physical and 
thermal properties of the working fluid (e.g., thermal conductivity, viscosity, heat capacity) [3]. 

Many efforts at manufacturing and enlarging of Stirling engine have been put forth by companies and 
research organizations. The period of new Stirling engine improvement was began in 1937 by the 
Philips Company, which developed Stirling engine sizes up to 336 kW [4]. More recently, Prodesser 
[5] built a Stirling engine that is fueled with biomass to produce electric power, and that can generate 
an electric power of 3.2 kW while achieving a pressure of 33 bars. Sripakagorn and Srikam [6] built a 
beta-type Stirling engine that operated at a medium temperature range and generated 95.4 W of electric 
power with internal conditions of 773 K and 7 bar. Karabulut et al. [7] built a Stirling engine capable 
of generating 183 W of electric power using a working fluid of helium that attains a pressure of 4 bar. 
Cheng and Yu [8] investigated numerically a beta-type Stirling engine to identify the effects of various 
parameters, including non-isothermal effects and the performance of the regenerative channel. Chen et 
al. [9] developed a numerical approach for assessing a c-type Stirling engine so as to permit prediction 
of various geometrical and process characteristics, and showed that regeneration effectiveness 
influences efficiency and engine speed influences engine power the most. Formosa and Despesse [10] 
developed a model to investigate heat exchanger efficiency and regenerator flaws for a Stirling engine, 
and examined the effects of regeneration on thermal efficiency and output power. Also, a smart model 
to predict Stirling heat engine power output using an evolutionary approach was developed by Ahmadi 
et al. [11-17]. 

System identification methods are able to demonstrate and estimate the behaviors of unidentified 
and/or very complicated systems on the basis of specified input–output data, for various fields of 
engineering [18]. Calculation approaches for these methods [19], which involve specification in an 
uncertain environment, have attracted considerable attention of researchers. The most common 
calculation approaches include neural networks, fuzzy logic and evolutionary algorithms, and these 
have contributed significantly to improving understanding of recognition and control issues for 
complicated, non-linear systems.  
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Various investigations have been performed on methods for utilizing evolutionary algorithms for 
system recognition [20–24]. Amongst these, the group method of data handling (GMDH) is a self-
organizing technique that creates a progressively more complex approach on the basis of the 
assessment of its effectiveness for an assortment of multi-input, single-output data couples (Xi,yi) (i = 
1,2,. . . ,M). The GMDH was introduced by Ivakhnenko [25] as a multivariate analysis approach for 
complicated systems modeling and recognition. GMDH can be utilized to avoid the complexity of 
obtaining former information with the algebraic approach of the progression. Thus, GMDH can be 
utilized to demonstrate complicated systems without having particular information of the systems. 

GMDH operates by creating an analytical function in a feed forward network on the basis of a 
quadratic node transfer function [26], in which constants are obtained by a regression procedure. The 
actual GMDH approach, where method factors are approximated via a least squares approach, can be 
categorized based on comprehensive initiation and partial initiation; illustrate the combinatorial 
(COMBI) and multi-layered iterative algorithms (MIA), correspondingly [27].  

Presently, the employment of self-organizing networks has increased the effectiveness of the GMDH 
approach for a wide variety of fields and applications [25–31]. There have been many attempts in the 
past to assemble population-based stochastic search methods such as evolutionary approaches like 
ANNs (artificial neural network), particularly since such evolutionary methods are helpful for 
complicated problems having large search spaces with many local optimums [32]. A review of 
evolutionary approaches within ANNs is presented in Ref. [33]. Genetic algorithms have been utilized 
in feed-forward GMDH style NNs, in which a neuron explores its optimum assortment of connections 
with the previous layer [34]. 

In the present work, a model is developed incorporating GMDH and Stirling engine experimental 
outcomes for the first time [35, 36]. The results are verified against experimental values. In the study, 
112 configuration numbers, obtained from prior investigations [35,36], are utilized for both training 
the polynomial NN and estimation. Inputs for the NN model are temperature of the hot working fluid, 
pressure and fuel, while the outputs are torque and power. The GMDH-style NN is developed to 
determine the input–output relationship in the form of polynomials. Such NN recognition progression 
requires some optimization approaches to specify the best network topology. In this regard, the GAs 
are organized in a novel model to specify the complete topology of the GMDH-style NNs, i.e., the 
neurons’ number throughout every hidden layer and their connection conformation. Singular Value 
Decomposition (SVD) is employed to identify the optimum constants of quadratic formulations for 
predicting of torque and power. 

2. Principles of modeling using GMDH types of Artificial Neural Networks 

An approach can be expressed as an assortment of neurons where various pairs throughout every 
layer are associated via a quadratic polynomial through the GMDH algorithm and, consequently, 
generate fresh neurons throughout the further layer. Such information can be used in modeling to link 
outputs to inputs. The accepted definition of the recognition issue is to determine a function f̂ that can 
be roughly utilized in place of real one, f , with the intention of estimating output ŷ  for a specified 
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input vector ),...,,,( 321 nxxxxX     that is close to its real output y. For specified M observations of 

multi-input–single-output data couples the real target can be expressed as follows: 
1 2 3 1 2 3i i i i iny f ( x , x , x ,..., x ) ( i , , , ...M )   (1) 

 
Now, a GMDH style NN is trained to estimate the target values if̂  for any specified input 

vector ),...,,,( 321 iniii xxxxX       as follows: 

1 2 3 1 2 3i i i i in
ˆŷ f ( x ,x ,x ,...,x ) ( i , , , ...M )   (2) 

 
In this step, the issue is to specify a GMDH style NN in order to minimize the square of the 

difference between the real target and the estimated one, as follows: 
2

1 2 3
1

M
i i i in i

i

ˆ ˆf ( x ,x ,x ,...,x ) y min


  
   

(3) 

 
The overall relation between input and output parameters can be formulated by a complex discrete 

form of the Volterra functional series as follows: 

1 1 1 1 1 1

n n n n n n
i i ij i j ijk i j k

i i j i j k
y a a x a x x a x x x ...

     

        
(4) 

which is recognized as the Kolmogorov–Gabor polynomial [25,27-29]. This full algebraic arrangement 
can be represented by a system of partial quadratic polynomials containing only two parameters 
(neurons) as follows: 

 
2 2

1 2 3 4 5i j i j i j i jŷ G( x ,x ) a a x a x a x a x a x x        (5) 

 
In this regard, such partial quadratic sketch is utilized reversely throughout a network of linked 
neurons to form the universal arithmetic correlation of input and output parameters specified in Eq. (4). 
The coefficients ia  in Eq. (5) are specified by regression approaches in order to minimize the 
differentiation between real output y  and the determined one ŷ for each pair of input 
parameters ji xx , . 

 
In actuality, it can be observed that a hierarchy of polynomials is built utilizing the quadratic form 

provided in Eq. (5) whose constants are acquired via least-squares logic. Then, the constants of every 
quadratic function iG  are obtained to optimally fit the output throughout the entire set of output–input 

data pairs, as follows: 
 

2
M

i i
i

( y G )
E min

M  
 
In simple terms, in the GMDH approach the probabilities are provided of two autonomous 

parameters out of the entire n input parameters being chosen. This is done with to create the regression 
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polynomial in Eq. (5) that best fits the dependent observations  ...   ),,2,1,( Miyi   through least-

squares logic. 
 

Accordingly, 
2

)1(
2
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neurons are assembled throughout the prime hidden layer of the feed 

forward NN from the observations  Mixxy iqipi ,,2,1(;),,( ....      for various  nqp   ,...,2,1,  . That is, it 
is now promising to build M data trebles Mixxy iqipi ,,2,1(;),,( ....      from observations utilizing such 
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Utilizing the quadratic sub-formulation type of Eq. (5) for every row of M data trebles, the 

subsequent matrix formula can be straightaway gained as 
Aa Y  (6) 

 1 2 3 4 5a a , a , a , a , a , a  (7) 

 1 2 3
T

MY y , y , y ,...y  (8) 

 
Here, a  denotes for the vector of unidentified constants for the quadratic polynomial in Eq. (5), and Y 
denotes the vector of output values from observations. Thus, the following expression can be 
formulated: 
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(9) 

 
The least-squares approach from the analysis of the multiple-regression effect leads to the following 

standard expression: 
 

 
1T Ta A A A


  
(10) 

 
This equation specifies the vector of the best constants of Equation (5) for the entire array of M data 
trebles. Note that this technique is iterated for every neuron of the further hidden layer accompanied by 
the connectivity structure of the NN. Such an answer from standard equations is more exactly 
vulnerable to improve deviations and, more outstandingly, to the individuality of the aforementioned 
formulas [37-42]. 

 
There are two central concepts included in a GMDH type of artificial neural network scheme, i.e., 

topology identification and the parametric [37-42] utilization of the GA for designing the structure for 
GMDH type of NNs. Stochastic techniques are generally utilized throughout the process of training of 
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NNs in terms of connected coefficients or weights, and have been effectively implemented and 
demonstrated to be superior to conventional gradient-based approaches.  

In the most GMDH types of NNs, neurons throughout any layer are linked to a neuron in a 
neighboring layer, as indicated earlier for techniques I and II that previously report in [30-35]. With 
this improvement, a straightforward programming pattern can be used for the genotype of any 
individual throughout the population, as previously suggested [33, 37, 38]. The programming scheme 
is presented in Fig. 1. 

GMDH NNs (GS-GMDH) should be capable of demonstrating various lengths and sizes of such 
NNs. throughout a GS-GMDH NN, as demonstrated in Fig. 1, neuron ad inside the principal hidden 
layer is attached to the output layer by straightforwardly extending the further hidden layer. Thus, it is 
relatively simple to perceive that the designation of the network’s output includes ad double as 
abbcadad. That is, a cybernetic neuron named adad is assembled throughout the further hidden layer 
and utilized within the same layer to create the output neuron, as illustrated in the Fig. 1.  

 

Figure. 1. A generalized GMDH network structure of chromosome. 

 
This procedure occurs when a neuron is delivered to particular neighboring hidden layers and links 

to an alternative neuron in the succeeding hidden layer (2nd, or 3rd, or 4th, etc.). Throughout this 
programming pattern, the number of replications that neuron is subject to the number of approved 
hidden layers, n~ , and is determined as n~2 . Note that a chromosome such as ababbcbc, is different 
from chromosome ababacbc, and thus it is not a usable individual in the GS-GMDH networks and has 
to be re-written straightforwardly as abbc. 

Now it is possible to generate two offsprings from two parents by implementing the GA operatives 
of mutation and crossover. The process of selection is performed on the basis of a natural roulette 
wheel selection approach for selecting two parents generating two offsprings [33,37,38]. 

The combination of a GA into the scheme of GMDH style NNs commences by demonstrating each 
network as a string of consecutive sub-strings of sequential numbers. The fitness,  , of each whole 
string of representative numbers which characterizes a GMDH style NN approach is assessed as 
follows: 

1
E

 
 

(11) 
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where E denotes the mean square of error (MSE) in Eq. (10), which is minimalized inside the 
evolutionary progression by exploiting the magnitude of fitness,  .  

The evolutionary progression is initiated by arbitrarily producing an initial population of 
representative series, as a proposed solution. Then, genetic operations such as mutation, crossover and 
roulette wheel selection are performed on the overall population of representative series to improve the 
solution progressively. In this regard, GMDH style NN approaches with increasingly rising fitness,   , 
are created until no additional substantial progress is possible. 

To determine the integrity and reliability of the proposed polynomial models for modeling torque 
and output power of the Stirling engine, the correlation of determination (R2), as a mean absolute 
percentage of error (MAPE), and root mean square error (RMSE) which are used, expressed as follows 
[43-45]: 
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(14) 

 

3. Results and Discussion 

Based on the approach described in the preceding section, the polynomial generated for the Stirling 
engine for torque is formulated as follows: 

 

2 2

2 2

2

4.19018 0.013268 0.00270926 0.00000990598 2.8801 0.155272

0.189686 2.02653 0.930981 0.381378 0.480105 0.305945
3.45598 0.00754163 0.000582712 0.00000502679 0.0170

h h h

h h h

Torque T AT T A A

A B BC B C C
B T T p T

     

      

      2

2 2

738

1.45881 0.253347 0.0575211 0.0282376 0.441726 0.0596564

p

C p pF p F F        

(15) 

and for output power is formulated as follows: 
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2

2

2 2

373.951 1.12004 0.00564667 0.000785436 1.50314

20.687 1.51768 0.00209829 0.0018406 0.660555
638.237 1.30715 0.0842743 0.000835089 12.9758 3.19127

1

h h h

h h h

Output power T A T T A

A B B C B C
B T T p T p p

C

     

         

       

   262.822 47.9507 5.65611 4.19637 16.5671p pF p F   

 

(16) 

Here, p  denotes pressure, hT  temperature of the hot working fluid, and F  fuel. Statistical indices for 

the results obtained with the aforementioned polynomial approaches are summarized in Tables 1 and 2 
for torque and power, respectively. 

Table 1. Values of absolute fraction of variance, root-mean squared error and mean absolute 

percentage, respectively, for torque model. 

Statistical parameter Value 

R2 0.9518 

MAPE 0.0007 

RMSE 0.1718 

 

 

Table 2. Values of absolute fraction of variance, root-mean squared error and mean absolute 

percentage, respectively, for power model. 

Statistical parameter Value 

R2 0.9737 

MAPE 0.0005 

RMSE 0.1838 

As illustrated in Fig. 2, the deviations for torque values predicted with the model are not 
considerable when the torque is between 0.1 and 1.5 N.m, are low when the torque is between 1.5 and 
2.5 N.m and approach zero when the torque is between 2.5 and 3.7 N.m. The relative error of the 
developed ANN model for torque determination versus relevant actual torque values are also shown in 
Fig. 2, where the maximum relative error is seen to be 32% for the low torque boundary and to 
decrease as torque rises, reaching a value of 11% for high torques.  
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Figure 2. Variation of relative error with corresponding experimental torque values. 

 

It can be seen in Fig. 3 that there is a good agreement between the model outputs and the 
experimental torque based on the data index simulated in this work. 

 

Figure 3. Comparison of experimental torque and outcomes of the GMDH approach. 

 

The output results of GMDH model in Fig. 4 for experimental power outputs of 50 W through 500 
W are compressed around zero deviation line, which means that the deviation of the addressed model 
in this interval is very low. Nonetheless, about five noisy points experimental power outputs lower 
than 150 W are observed in the figure. 

Figure 4. Variation of relative error with experimental power output values. 
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The outcomes of the evolved GMDH model are seen in Fig. 5 to follow the actual trend of the 
output power of the Stirling engine based on the corresponding data index simulated in this study. 

 

Figure 5. Comparison of experimental power output and outcomes of the GMDH approach. 

 
 

4. Conclusions  

An intelligent approach to determine the output power and torque of a Stirling heat engine is 
proposed and developed. The approach exploits the GMDH method to develop an accurate predictive 
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tool for determining addressed variables in manner that is inexpensive, fast and precise. Accurate 
actual data banks used with the predictive tool for testing and optimizing phases. The statistical data 
regarding the output results of the developed GMDH model suggest that the evolved method has a 
high level of robustness and integrity for output power and torque determination. Thus, based on the 
output results, the GMDH approach could help energy experts to design Stirling heat engines with high 
levels of performance, reliability and robustness and with a low degree of uncertainty. 
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