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INTRODUCTION & AIM RESULTS & DISCUSSION

The clinker production process accounts for approximately 8% of global CO,
emissions. In the conventional CaCO, calcination process, around 525-550
kg of CO, are released per ton of clinker, the main constituent of cement.
This CO, generated is intrinsic and non-recoverable in the calcination
reaction [1-5]. In recent years, electrochemical manufacturing has emerged
as a promising pathway to decarbonize traditional high—temperature
processes in the chemical industry, offering routes that integrate CO,
recovery and renewable—powered electrochemical conversion [3,06].
Therefore, it has been proposed to replace the thermal calcination of CaCO,
with an electrochemical reaction that produces H, (energy carrier) and CO,
(recoverable stream) [3,4].

Calcination

> Ca0 + C0,(g)

CaCos;

Electrochemical Cell

>Ca(OH), + CO,(free flow)

The research aims to evaluate, from a life cycle analysis perspective, the
replacement of calcination process by the electrochemical decarbonation
route for CaO production in clinker manufacturing.

CaCos;

METHOD

System Boundaries and Inventory Assumptions

The analysis considers the Clinker production stage (A1-A2) within a cradle
to gate system boundary. Three routes were compared:. conventional
calcination, electrochemical decarbonation, and a Ca(OH), — based pathway.
The functional unit is 1 ton of Clinker. Only process — and energy — related
CO, emissions were included. Data from Ellis et al. [1] and Martinez et al. [4]
were used,with yields (CHy 52 — 80%) and CO, reduction efficiencies (52 —
90%) applied.

Energy demand for the electrochemical route was scaled from laboratory
data [1] to an industrial adjusted value of 3.2 MWh t! clinker, using efficiency
benchmarks from mature electrochemical industries such as chlor — alkali
[6,7] and molten — oxide electrolysis [8]. Only process and electricity —
related CO, emissions were included, considering a constant energy carbon
intensity of 0.1 kg CO, kWh'. System boundaries and inventory
assumptions for the clinker production stage (A1-A2) are illustrated below.

Figure 1. System boundaries for the clinker
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Industrial-adjusted estimates, which include the dehydration step
(Ca(OH),>Ca0) were benchmarked using data from Martinez et al. [4],
supported by insights from emerging electrochemical decarbonization
technologies [6] and established high-temperature electrolysis systems [7,8].
The scaling assumes that the laboratory energy demand (10.04 MWh t
clinker) decreases proportionally with cell-efficiency improvements from =
26% to 75-90%. This adjustment yields an estimated industrial consumption
of = 3.2 MWh t, consistent with mature electrochemical benchmarks such
as chlor-alkali and molten—oxide electrolysis [7,8]. The resulting energy and
CO, emission estimates are summarized in Table 1.

Table 1. Energy demand and CO, emissions for
conventional and electrochemical routes to produce CaO
(per ton of clinker).

Process route CO, from CO, from Energy
reaction (kg t') energy(kgtl) (MWh t?Clinker)
Conventional 540 100 1.0
Calcination
Electrochemical c4 350 35

(industrial-adjusted)

Note: The residual CO, emissions reported for the electrochemical route (~54 kg t* clinker) originate from the partial
decomposition of unreacted carbonate in the particulate material (PM), rather than from fuel combustion. The total
includes the additional 0.3 MWh t' required for Ca(OH), dehydration to obtain CaO [10-12].

Figure 2. CO, emission reduction potential of the
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Data adapted from Martinez et al. [4] and this study
Figure 2. Comparison of process—related CO, emissions for conventional

calcination (gray) and the electrochemical decarbonation route (green). The
electrochemical pathway, including the dehydration step (Ca(OH)2->CaO),
achieves a 37% reduction per ton of clinker due to CO, recovery and the
absence of fuel combustion.

CONCLUSION

The electrochemical decarbonation route demonstrated a 37% reduction in total CO,
emissions compared to conventional calcination, even when including the dehydration
of Ca(OH), to CaO. This reduction is mainly attributed to the elimination of fuel
combustion and the potential recovery of concentrated CO,. While current energy
requirements remain similar to thermal routes, further efficiency improvements and
renewable electricity integration could enable a near-zero —carbon pathway for clinker
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