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METHOD

The clinker production process accounts for approximately 8% of global CO2 

emissions. In the conventional CaCO3 calcination process, around 525-550 

kg of CO2 are released per ton of clinker, the main constituent of cement. 

This CO2 generated is intrinsic and non-recoverable in the calcination 

reaction [1–5]. In recent years, electrochemical manufacturing has emerged 

as a promising pathway to decarbonize traditional high–temperature 

processes in the chemical industry, offering routes that integrate CO2 

recovery and renewable–powered electrochemical conversion [3,6]. 

Therefore, it has been proposed to replace the thermal calcination of CaCO3 

with an electrochemical reaction that produces H2 (energy carrier) and CO2 

(recoverable stream) [3,4]. 

The research aims to evaluate, from a life cycle analysis perspective, the 

replacement of calcination process by the electrochemical decarbonation 

route for CaO production in clinker manufacturing.
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System Boundaries and Inventory Assumptions

The analysis considers the Clinker production stage (A1-A2) within a cradle 

to gate system boundary. Three routes were compared: conventional 

calcination, electrochemical decarbonation, and a Ca(OH)2 – based pathway. 

The functional unit is 1 ton of Clinker. Only process – and energy – related 

CO2 emissions were included. Data from Ellis et al. [1] and Martínez et al. [4] 

were used,with yields (CHy 52 – 80%) and CO2 reduction efficiencies (52 – 

90%) applied.

Energy demand for the electrochemical route was scaled from laboratory 

data [1] to an industrial adjusted value of 3.2 MWh t-1 clinker, using efficiency 

benchmarks from mature electrochemical industries such as chlor – alkali 

[6,7] and molten – oxide electrolysis [8]. Only process and electricity – 

related CO2 emissions were included, considering a constant energy carbon 

intensity of 0.1 kg CO2 kWh-1. System boundaries and inventory 

assumptions for the clinker production stage (A1–A2) are illustrated below.

Figure 1. System boundaries for the clinker 

production stage (A1 – A2) [9]
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Figure 2. CO₂ emission reduction potential of the 

electrochemical route in clinker production

Figure 2. Comparison of process–related CO2 emissions for conventional 

calcination (gray) and the electrochemical decarbonation route (green). The 

electrochemical pathway, including the dehydration step (Ca(OH)2→CaO), 

achieves a 37% reduction per ton of clinker due to CO2 recovery and the 

absence of fuel combustion. 

Industrial-adjusted estimates, which include the dehydration step 

(Ca(OH)2→CaO) were benchmarked using data from Martínez et al. [4], 

supported by insights from emerging electrochemical decarbonization 

technologies [6] and established high-temperature electrolysis systems [7,8]. 

The scaling assumes that the laboratory energy demand (10.04 MWh t-1 

clinker) decreases proportionally with cell-efficiency improvements from ≈ 

26% to 75–90%. This adjustment yields an estimated industrial consumption 

of ≈ 3.2 MWh t-1, consistent with mature electrochemical benchmarks such 

as chlor-alkali and molten–oxide electrolysis [7,8]. The resulting energy and 

CO₂ emission estimates are summarized in Table 1.

Process route
CO2 from

reaction (kg t-1)
CO2 from

energy (kg t-1)
Energy 

(MWh t-1 Clinker)

Conventional
Calcination

540 100 1.0

Electrochemical
(industrial-adjusted)

54 350 3.5

Table 1. Energy demand and CO₂ emissions for 

conventional and electrochemical routes to produce CaO 

(per ton of clinker).

Note: The residual CO2 emissions reported for the electrochemical route (~54 kg t-1 clinker) originate from the partial 

decomposition of unreacted carbonate in the particulate material (PM), rather than from fuel combustion. The total 

includes the additional 0.3 MWh t-1 required for Ca(OH)2 dehydration to obtain CaO [10-12].

The electrochemical decarbonation route demonstrated a 37% reduction in total CO2 

emissions compared to conventional calcination, even when including the dehydration 

of Ca(OH)2 to CaO. This reduction is mainly attributed to the elimination of fuel 

combustion and the potential recovery of concentrated CO2. While current energy 

requirements remain similar to thermal routes, further efficiency improvements and 

renewable electricity integration could enable a near-zero –carbon pathway for clinker 

production
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