

Novel Small-molecule Mdm2 Inhibitor As A Potential Anticancer Agent For Gastric And Breast Cancer

Cancers
2025
Conference

Santhipriya P R¹, Trishala Das², Azhar Tariq Khan³, Naidu Subbarao², Andrew Lynn², Nasimul Hoda³, Neelima Mondal¹ School of Life Sciences, ² School of Computational and Integrative Sciences, Jawaharlal Nehru University,

³Department of Chemistry, Jamia Millia Islamia, New Delhi, India

mail: santhi87_sls@jnu.ac.in, nmondal@jnu.ac.in

ABSTRACT

Breast and gastric cancers are among the most common cancers worldwide and are strongly influenced by the p53–MDM2 axis, yet clinical development of MDM2 inhibitors has been limited by drug resistance and poor efficacy. We investigated K1, a quinazoline derivative, which demonstrated potent anticancer activity with an IC50 value of 18.5μM in AGS and 19μM in MCF7 cell lines post 72h treatment, and it also significantly reduced their clonogenic potential. Transcriptomic data show that K1 targets multiple stress pathways in distinct cellular compartments. In MCF7, ribosomal stress genes (RPL11, RPL23, RPS7, RPL26) and ER stress markers (DDIT3, ATF4, EIF2AK3) were upregulated. In addition, the expression of apoptotic protein mediators (PMAIP1, BBC3) and DNA damage regulators (CDKN1A, CDKN2D, FHIT) was also upregulated. Whereas in AGS cells, mitochondrial dysfunction and mitophagy indicators (PINK1, PRDX3, PARK7), oxidative stress genes (CYP1A1, BACH1) and apoptotic regulators (FOXO3, RHOB, STAT1) showed increased expression. Elevated expression of mitotic stress and spindle assembly checkpoint genes (PLK1, CDC20, BUB1, MAD2L) leads to G2/M arrest and spindle disruption. This compartment-specific activity indicates a spatial biology perspective, linking gene expression changes to localized stress within the tumor environment. K1 causes nuclear fragmentation, cytoskeletal disruption, ROS generation, mitochondrial dysfunction, and DNA damage. In vitro studies indicated decreased MDM2 with increased p53 and p21 expression in MCF7, while AGS showed a decline in MDM2 and p53, with increased p21 expression. Despite the differences in response, both cell lines ultimately culminated in apoptosis. Molecular docking of K1 with MDM2 exhibited key molecular interactions, binding conformation and stable dynamics. Our data identifies K1 as a promising anticancer candidate that activates compartment-specific, spatially distinct stress response leading to apoptosis in two distinct cancer types.

CONCLUSION AND FUTURE DIRECTION

K1 inhibits cell proliferation, clonogenicity and changes the morphology of gastric cancer cell line AGS and breast cancer cell line MCF7. K1 decreases p53 and MDM2 expression in AGS while in MCF7 cells, p53 expression is upregulated and MDM2 get downregulated. K1 induced cell cycle arrest at G2/M for AGS and G1 for MCF7 cells. ROS production and MMP dissipation by K1 in both cell lines initiate the DNA damage, increased expression of γH2AX, cleaved PARP, BAX leading to apoptosis. Validation genes from transcriptomic analysis will help to know pathways and genes involved in the differential expression of K1 in AGS and MCF7 cells.

ACKNOWLEDGEMENT