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INTRODUCTION & AIM RESULTS & DISCUSSION

Accurate short-term discharge forecasting is essential in the effective management of river
basins, the prevention of floods, and the planning of water resources [1]. Effective river flow
condition forecasting has the potential to significantly enhance decision-making in
operational hydrology, especially in cases involving prompt responses to extreme weather or
changing hydrologic conditions. Some conventional hydrological models have physical
process bases, but they are highly data-intensive in terms of calibration and catchment data,
which may not be easily accessible or updated. In the past few years, data-driven
approaches have surfaced as possible substitutes or complementary alternatives to
physically-based models [2]. Machine learning methods, among others, have been shown to
possess strong capabilities in mimicking complex, nonlinear input-to-output relations [3].
Gradient boosting algorithms, such as Extreme Gradient Boosting (XGBoost), are well-suited
for such purposes based on their high predictive accuracy, immunity to overfitting, and ability
to work with varied data types. In this study, the application of a multi-output regression
model with XG-Boost for up to six-hour-ahead river discharge prediction is explored. The
strategy of the model employs historical discharge data along with engineered temporal
features like lagged flows and time-based indicators to extract temporal patterns in flow
behavior. The study area is centered on a U.S. Geological Survey (USGS) monitoring station
at Hurricane Mills, Tennessee (site ID: 03603000), where a high-resolution time series
record of hourly discharge is available. The process pipeline involves in-depth data
preprocessing, including imputation of missing values and resampling, as well as systematic
feature engineering to derive useful predictors from the discharge time series. A stepwise
multi-output strategy is adopted, where each model is trained to forecast each lead time
individually. The performance of the models is then evaluated using conventional statistical
metrics for establishing their predictive accuracy and reliability.

METHOD

Feature Engineering

Create Lag Features Fori=1to N_steps — 1, generate columns discharge_lag i by shifting the discharge series by i periods to represent

recent historical discharge values (e.g., Q¢-1, Qt-2, --.).
Fori=0to N_steps — 1, create discharge_diff_i columns by computing one-step differences (Q; — Q:-1) and lagging
them to capture short-term rate of change.

e \ Create Short-Term
Difference Features

Data Preparation

Create 24-Hour
(Preprocess hourly !

Similarly, compute 24-hour (daily) discharge differences (Q; = Q-24) and lag them to model daily persistence or cyclical

. —y» Difference Features patterns.
discharge
DataFrame) Add Time-of-Day Extract the hour of the day (0—23) from the time index and store it as a new feature (hour_of day) to capture diurnal
Feature effects.
\ / Generate Future For i =0 to N_predict = 1, create target columns discharge_future_i by shifting the discharge series backward by i+1

Targets periods, representing future discharges (Q+1, Qti2s ---» Quse)-
Remove NaN Rows Drop all rows containing NaN values created by lagging and shifting operations to ensure feature—target alignment.

Split into Features and = Separate the resulting dataset into: Features (X) — all predictor columns, and Targets (Y) — the future discharge
Targets columns.
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Model Training

Initialize Model Dictionary: Create an empty dictionary to store models. /
Loop Over Forecast Steps: Iterate through each future time step.

Set Model Parameters: Use XGBoost with 1000 trees and max depth 3.
Train Each Model: Fit each model on training data for each future target. |¢
Validation & Early Stopping: Monitor performance with MAE;

Stop after 50 rounds without improvement.

Save Trained Models: Store each model in the dictionary by its forecast

Data Split

1, 2016, to July 1, 2020

2020, to January 1, 2024
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Metrics Calculation

Feature Prediction and Performance metrics Vlsgz;zt?ntlon
Importance Evaluati (MAE, MSE, RMSE, - 9 .
Visualization vaiuation MAPE, Huber Loss, KGE, compre slr;e;;ve metric

NSE, MBE, R?)
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Figure 1. Methodological flowchart.
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Figure 2. Duck River and Duck River Watershed, Tennessee, USA, with the selected outlet
marked in red on the map (USGS 03603000).

Training Data: From January

Validation Data: From July 1,
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Figure 3. Model performance metrics for multi-hour lead time forecasts (1 to 6 hour lead
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Figure 4. Scatter plots for (a) 1-hour lead time, (b) 2-hour lead time, (c) 3-hour lead time,

(d) 4-hour lead time, (e) 5-hour lead time, (f) 6-hour lead time.
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Figure 5. Feature importance ranking using F-score.

The XGBoost-based model achieved high accuracy, with MAE ranging from 0.99 to 4.79
m3/s and RMSE ranging from 4.44 to 21.06 m3/s for lead times of 1-6 hours. MAPE
remained below 3% across all horizons, and efficiency metrics (KGE, NSE, R?) exceeded
0.98, indicating strong agreement with observed discharge. Feature importance analysis
highlighted recent discharge lags and short-term differences as key predictors.

CONCLUSION & FUTURE WORK

Future improvements in this study could focus on enhancing feature engineering by
incorporating additional time features (e.g., weekday, rolling statistics) and external factors,
such as weather conditions or upstream flow. The model's performance can be enhanced
through systematic optimization of hyperparameters, ensemble learning methods, and the
use of time-series cross-validation for improved generalization. Exploring deep learning
methods, such as LSTM, may capture subtle temporal relationships, while probabilistic
forecasting methods would offer valuable insights into prediction uncertainty.
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