
Solutions to the previous fuzzy problem and the boundary and initial conditions, can be find utilizing the 
theories of [2-4], translating the above fuzzy problem to a system of second order of crisp boundary value 
problems, hereafter called corresponding system for the fuzzy problem. Therefore, eight crisp BVPs 
systems are possible for the fuzzy problem with the same initial and boundary conditions. We have hereby 
restricted ourselves to the solution of the first system:
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Construction of the application

In the following graphs (Figures 5-7), it is evident that the fuzzy triangular FEM results are in close 
agreement with those obtained from the fuzzy orthogonal FEM, and both show satisfactory 
consistency with the semi-analytical solution of Lockington.
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For the solutions of the above system the dimensional 
form is constructed as follows:
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In which parameters K and S considered fuzzy based on 
the following graphs (Figures 1-3).
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Figure 2. Fuzzy estimator K

Figure 3. Fuzzy estimator of S Figure 4. Fuzzy estimator of K/S

Figure 5. Ground water levels ℎ vs. 𝑥 for different times

Figure 6. Water recharge volume
Ω ( Τ𝑚3 𝑚) vs. 𝑡(𝑑)

Figure 7. Fuzzy estimator of water outflow 
𝑡 = 30𝑑

▪ Compared to traditional numerical approaches, the proposed fuzzy scheme provides a more robust and 
flexible framework capable of handling irregular geometries, highly variable hydraulic properties, and 
the inherent uncertainties in hydrological processes. 

▪ The integration of triangular fuzzy logic with FEM, grounded in the generalized Hukuhara derivative 
(gH-derivative) theory for partial differential equations, represents a substantial theoretical innovation 
that extends existing fuzzy calculus to practical hydraulic modeling

▪ Our comparative analysis shows that the triangular fuzzy FEM achieves excellent agreement with both 
the orthogonal fuzzy FEM and the Lockington semi analytical  solution. This confirms the method’s high 
reliability and predictive accuracy.

▪ Overall, the benefit gained through the application of this methodology is substantial, especially for 
engineers involved in the design and construction of hydraulic projects. 
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In this work, the fuzzy solution of the nonlinear 
Boussinesq equation is investigated for an 
unconfined aquifer bordering a lake, while the 
hydraulic conductivity (K) and specific yield (S) 
are treated as fuzzy. Traditional numerical 
techniques, such as Finite Difference Methods, 
have proven useful in solving various fluid 
dynamics problems. However, these methods 
struggle when applied to domains with 
complex geometries and heterogeneous 
boundary conditions.
Compared to traditional numerical 
approaches, the proposed fuzzy Triangular 
Finite Element scheme provides a more robust 
and flexible framework capable of handling 
irregular geometries, highly variable hydraulic 
properties, and the inherent uncertainties in 
hydrological processes. 

Figure 1. Definition sketch of the investigated problem
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