The 9th International Electronic Conference on Water Sciences

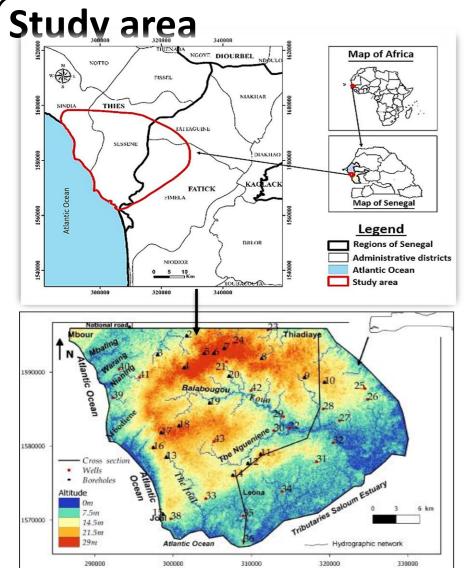
11-14 November 2025 | Online

Assessment of quality and acquisition of groundwater mineralization in the Mbour Fatick area, central-western Senegal

Seyni NDOYE¹, Mathias DIEDHIOU², Philippe LE COUSTUMER³, Arnaud GAUTHIER⁴

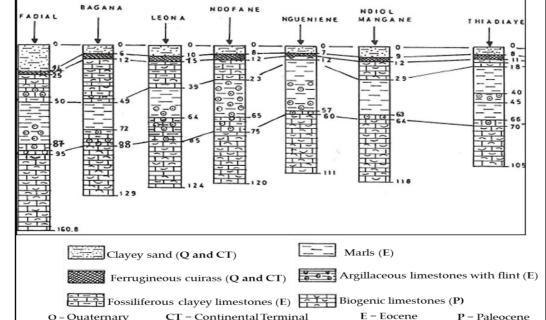
Laboratoire Eau-Energie-Environnement-Procédés industriels (LE3PI), Ecole Supérieure Polytechnique, Université Cheikh Anta DIOP, Dakar, Sénégal¹

Département de Géologie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal²;


Bordeaux Imaging Center, University of Bordeaux, Bordeaux, France³

Univ. Lille, Univ. Artois, IMT Lille Douai, JUNIA, ULR 4515 – LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000 Lille, France⁴

INTRODUCTION & AIM


- ☐ Global Context: Water resource management is a major global challenge, affecting agriculture, industry, and direct consumption.
- ☐ Local Issue: In the Mbour-Fatick region (Senegal), groundwater is the only source of water supply, subject to significant climatic and anthropogenic pressures. Access to drinking water is a major priority.
- ☐ Problematic: Several aquifers contain significant groundwater quantities, but the quality does not meet consumption standards due to deterioration caused by natural and/or anthropogenic processes.
- ☐ Research Objective: this work aims to update knowledge on the chemical quality of groundwater. We employed a three-tiered approach:
 - ✓ To assess changes in groundwater chemistry.
 - ✓ Identify the processes responsible for mineralization.
 - ✓ Determine the suitability of the water for consumption.

METHOD

Located between Longitude: 17°02'12"and 16°35'06"W Latitude: 14°27'11"and 14°35'13"N

Study area is part of the Senegal-Mauritania sedimentary basin

Approach Hydrogeochemistry and multivariate statistical analysis (Ascending Hierarchical analysis).

Sampling

- **✓ September 2019**: 42 samples (22 wells and 20 boreholes)
- May-June 2023: 42 samples (27 wells and 15 boreholes)
- Comparative data: Use of SARR data (1982) for temporal analysis.

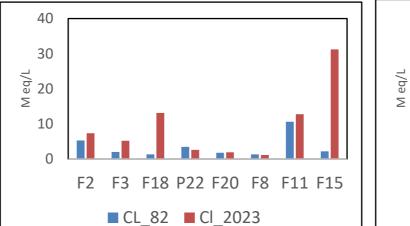
Study area

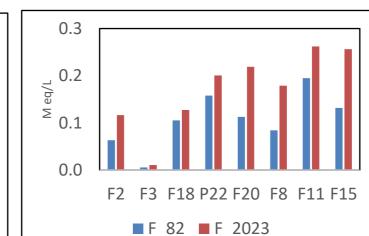
Analyses

- Electrical conductivity, Physicochemical parameters: and temperature were measured in the field using a WTW-multi 350i portable multi-parameter device
- ✓ Chemical analyses (HCO_3^- , Cl^- , SO_4^{2-} , F^- , NO_3^- , Ca^{2+} , Mg^{2+} , Na^+ , K^+) of the collected samples were performed at the Civil Engineering and Geo-Environment Laboratory (LGCgE) – Lille University (France).
- Health Risk Assessment: Calculation of the Total Health Index (THI) for fluoride.

RESULTS & DISCUSSION

General parameters

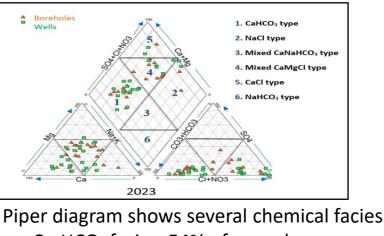

✓ **pH** ranges from 6.89 to 8.2, indicating that the water is neutral to slightly alkaline.

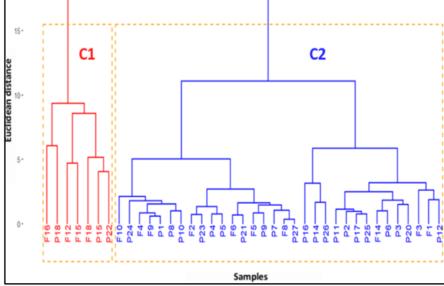

Electrical conductivity

- ranged from 127 to 5,800 µS/cm, with an average of 1,524.4 μ S/cm.
- 26% of water samples exceeded the WHO permissible limit of 1,500 μS/cm
- Order of abundance of ions in groundwater $HCO_3^- > Cl^- > SO_4^{2-} > NO_3^-$ for anions $Na^{+} > Ca^{2+} > Mg^{2+} > K^{+}$ for cations.

Parameters	Units	Moy	Min	Max	Med
рН	(-)	7.8	6.9	8.2	7.8
CE	μS/cm	1524.4	127	5800	1107
TDS	mg/L	1021.4	85.1	3886	741.7
Ca^{2+}	mg/L	105.5	13.5	353	79.1
Mg^{2+}	mg/L	44.8	0.7	188	45.5
Na^+	mg/L	116.4	13.4	609.4	65.8
<i>K</i> +	mg/L	4.7	0.1	23	2.3
HCO_3^-	mg/L	330.5	18.3	457.5	366
SO_4^{2-}	mg/L	69.6	1.8	587	37.6
NO_3^-	mg/L	54.8	0.5	425	24.2
Cl ⁻	mg/L	267.3	17.5	1556	129
F-	mg/L	3.2	0.1	9.4	2.6

Evolution of chloride and fluoride concentrations in the same boreholes

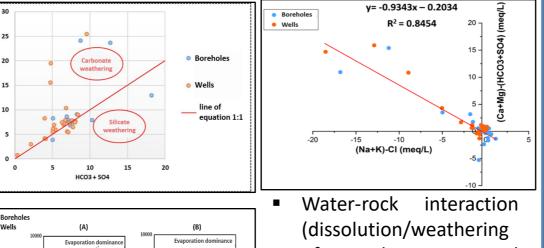



Why choose both ions? ✓ Salty taste: abandoned Wells

- ✓ Dental fluorosis observed in the population
- Cl⁻ and F⁻ show significant spatial and temporal variations between 1982 and 2023.
- increase in chloride and fluoride content

Chemical facies

- Ca-HCO₃ facies 54% of samples Na-Cl (10%) and Ca-Cl facies (10%)
- Mixed Ca-Mg-Cl type 26% of samples



characterized mineralized water with high average values for EC (3944 μS/cm) and mixed facies with a dominant Cl⁻ type; located in the vicinity of the sea.

Cluster 1(C1): 18% of samples,

Cluster 2 (C2): 82% of water samples and is associated with moderately mineralized, alkaline waters with a dominant mixed HCO₃- facies

Geochemical Processes

carbonates and silicates) is the main process regulating water chemistry.

> Other processes include ion exchange and evaporation

Health Risks Associated with Fluoride Dental fluorisis 5% of samples Dental and skeletal fluorisis 20%

Leads to skeletal fluorisis **Total Health Index**

THI > 1: Carcinogenic Risk

THI ≤ 1 :No-Carcinogenic Risk

Fluoride Man Children Woman 0.15-13.87 0.13-11.74 0.18-15.87 THI Samples exceed 82.05% 84.62% 87.18%

Calculation of THI for fluoride indicates a very high risk Increased risk of diseases such as dental and skeletal fluorosis, particularly in children.

CONCLUSION

permissible limit

- Overview: Water quality in the Mbour-Fatick area is strongly influenced by natural processes (water-rock interaction, evaporation) and is highly mineralized.
- Health threat: Fluoride contamination poses a serious threat to public health and requires special attention

FUTURE WORK / REFERENCES

Perspectives: Sustainable water resource management and appropriate treatment solutions are needed to ensure access to drinking water in the region

USEPA (2001) -Risk Assessment Guidance for Superfund: Process for Conducting Probabilistic Risk Assessment (Volume III-Part A, 540-R-502-002).

Sarr R. (1982) - Etude géologique et hydrogéologique de la région de Joal-Fadiouth (Sénégal). Thèse UCAD, 190 p. Ndoye, S., Fontaine, C., Gaye, C. B., and Razack, M. (2018). Groundwater quality and suitability for different uses in the Saloum area of Senegal. Water 10, 1837.doi: 10.3390/w10121837