The 9th International Electronic Conference on Water Sciences

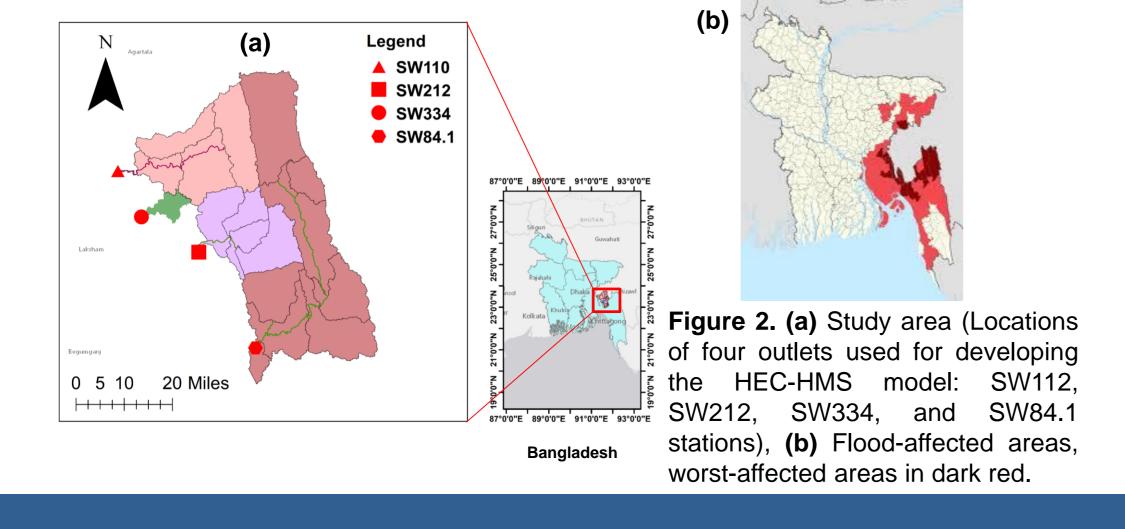
11–14 November 2025 | Online

Multi-Scale Hydro-meteorological Assessment of Extreme Flooding Events: The Case of Bangladesh's Eastern Deltaic Region

Md. Shahriar¹, Sujoy Dey^{1*}, Farhan Shahriure¹, Md. Jobayer Islam¹, Md. Jubayer Ahamed¹, S. M. Tasin Zahid¹, S. M. Firdous Siddiquee¹, Md. Aminul Islam¹, Md. Masud Rana¹, Navid Hasan¹, Deluar Hossain¹

¹Postgraduate Student, Department of Water Resources Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.

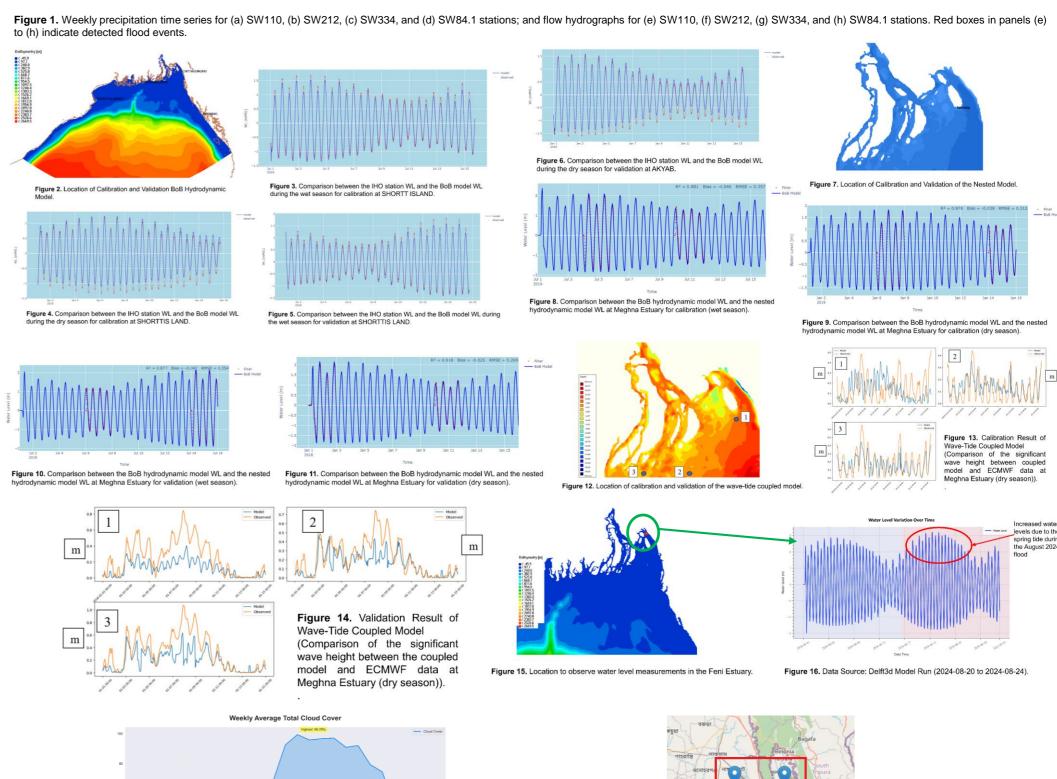
INTRODUCTION & AIM


The flash floods of August 2024 in the eastern and southeastern deltaic regions of Bangladesh severely impacted about 5.7 million individuals, claiming at least 23 lives and generating widespread destruction of infrastructure and agriculture. The occurrence was triggered by a combination of heavy rainfall, which was brought about by the interaction between cold air masses, a low-pressure system over the Bay of Bengal, and an intensified monsoon trough. Moreover, the coincidence of full moon and spring tides amplified the flood by holding back the outflow of floodwaters. In order to further investigate the water dynamics, the DELF3D model, which is a nested, wave-tide coupled model, is used in this study to simulate the water height changes in the Bay of Bengal (BoB) area [1]. The study also employs the HEC-HMS hydrological model, using discharge data from four stations to simulate the event with satisfactory accuracy, offering valuable insights into the hydrological dynamics. While the Dumboor Dam's water release during this period had minimal impact, the lack of early transboundary communication worsened the crisis. This study aims to quantify the contribution of tidal surges, rainfall, and geomorphological features to flood intensity. The results stress the pressing need for more integrated flood prediction systems with tidal-hydrological interactions, efficient early warning systems, and improved transboundary water communication to mitigate future flood vulnerability.

METHOD

Figure 1. Methodological flowchart.

STUDY AREA



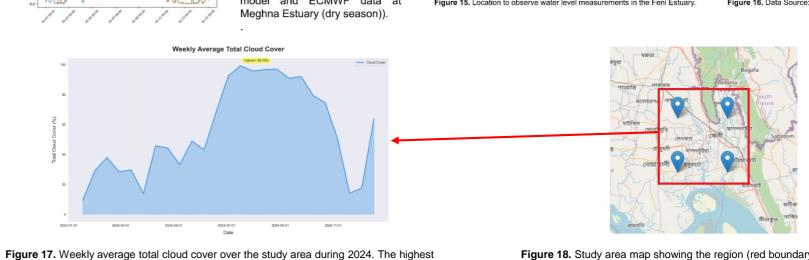

RESULTS & DISCUSSION

Table 1. HEC-HMS model performance: Calibration and validation results for selected stations.

Stations	SW110		SW212		SW334		SW84.2	1
Phase	Calibration	Validation	Calibration	Validation	Calibration	Validation	n Calibratio	n Validation
Peak Discharge (m³/s)								
Computed	124.1	152.1	124.1	166.7	7.8	8.3	120.9	155.2
Observed	190.5	180.5	232.5	134.2	20.2	17.6	227.9	144.1
Volume (mm)								
Computed	1650.98	1774.67	1150.98	1151.12	705.49	1705.40	681.36	356.13
Observed	1796.05	1815.69	1271.37	1206.09	909.55	1675.35	472.08	244.37
Performance Metrics								
RMSE Std Dev	0.59	0.64	0.76	0.81	0.84	0.88	0.77	0.90
Nash-Sutcliffe	0.754	0.746	0.714	0.684	0.663	0.652	0.689	0.676
Percent Bias	-0.79%	-2.30%	-9.47%	-4.56%	-8.40%	-7.60%	-0.84%	1.46%

cloud cover (99.29%) was observed in August.

Figure 18. Study area map showing the region (red boundary) for cloud cover concentration analysis.

CONCLUSION & FUTURE WORK

Future work should focus on enhancing the integration of tidal and hydrological models to improve flood forecasting accuracy, particularly in deltaic regions like Bangladesh. There is a need for real-time monitoring systems that combine meteorological, hydrological, and tidal data to provide more timely and localized early warnings. Additionally, strengthening transboundary water management and communication mechanisms with neighbouring countries is crucial to mitigating the impacts of such cross-border disasters. Future studies could also explore the impact of climate change on the frequency and intensity of similar events in the region.

REFERENCES

[1] Md. Shahriar; Dr. Md. Ataur Rahman DEVELOPMENT OF WAVE-TIDE HYDRODYNAMIC MODEL USING DELFT 3D FOR BAY OF BENGAL AND SIMULATION OF NEARSHORE HYDRODYNAMIC AT MEGHNA ESTUARY. 2025, doi:10.5281/ZENODO.17403666.