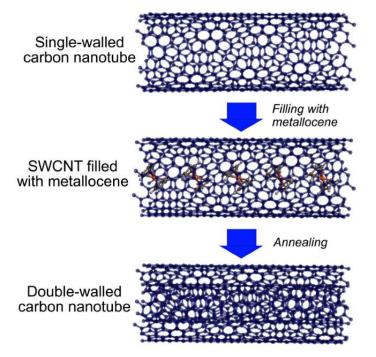


The 9th International Electronic Conference on Water Sciences

11-14 November 2025 | Online

Metallicity-sorted single-walled carbon nanotubes for water treatment

Marianna V. Kharlamova


Department of Materials Science, Lomonosov Moscow State University, Moscow, Russia

INTRODUCTION & AIM

Single-walled carbon nanotubes (SWCNTs) include metallic and semiconducting conductivity types, which depends on their chirality [1, 2]. Metallicity-sorted SWCNTs are promising for water treatment. The aim of this work was the preparation of nickelocene-filled metallicity-sorted SWCNTs and the investigation of their electronic properties. We analyzed the sorted samples by optical absorption spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), and we revealed that the sorted fractions of the metallic and semiconducting SWCNTs had high purity.

METHOD

The preparation procedure of the metallicity-sorted SWCNTs included density gradient ultracentrifugation of the arc-discharge SWCNTs, with a diameter of 1.4 nm.

The schematics of filling process of SWCNTs with nickelocene [3]. Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

RESULTS & DISCUSSION

The C 1s XPS spectra of the nickelocene-filled metallic SWCNTs, and annealed samples [4]. Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

CONCLUSION

The obtained data on the electronic properties of the metallicity-sorted SWCNTs are required for the water treatment applications.

REFERENCES

- 1. M. V. Kharlamova, C. Kramberger, K. Yanagi, T. Pichler. Physica Status Solidi B, 2015, 252(11), 2512-2518.
- 2. M. V. Kharlamova. Beilstein Journal of Nanotechnology, 2017, 8, 826-856.
- 3. M. V. Kharlamova, C. Kramberger. Nanomaterials, 2021, 11(11), article number 2984.
- 4. M. V. Kharlamova. Nanomaterials, 2021, 11(10), article number 2500.