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Background
 Wastewater Treatment Plants (WWTPs) are energy intensive (3-

4% of US electrical load - 110 TWh/year - 9.6 million households' 
annual electricity)

 Microbial Fuel Cells (MFCs) convert stored chemical electricity in 
wastewater directly to electricity, as well as lower chemical 
oxygen demand (COD) 

 MFC limitations:
o Low power density
o Limited nutrient removal
o Electrode/membrane costs

Microalgae-Assisted MFCs

 Ion exchange membranes facilitate the exchange of ions 
between the MFC anode and cathode chambers

 Both cation exchange membranes (CEMs) and anion exchange 
membranes (AEMs) can be used, among other types

 CEMs allow positive ion transport (e.g., H+, NH4
+)

 AEMs allow negative ion transport (e.g., OH-, NO3
-, PO4

3-)
 This research aims to assess whether CEMs or AEMs best 

address MFC limitations (power density, nutrient removal)

(Anode) Substrate → CO2 + H+ + e- [unbalanced]
(Cathode) O2 + 4H+ + 4e- → H2O

(Algae) CO2 + H2O + light → biomass + O2

Biocathode

Microalgae

Biocathode MFC configuration

Ion exchange membrane
 (CEM in this case)

 Other exchange membranes in algae-integrated MFCs, e.g., proton 
exchange membranes (PEMs) or bipolar membranes (BIMs)

 Mixed algal-bacterial consortia synergizing pollutant uptake (organics, 
nitrogen, phosphorous) with power generation

Light source

Biocathode, algae (chlorella vulgaris) + DI water

Anode, preliminary
wastewater + secondary 
sludge (covered with
foil)
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 One MFC using AEM, one MFC using CEM
 Voltages recoded with multimeter (1000 Ω resistor, titanium wire)
 Measured water quality parameters (COD, nutrients, pH, dissolved 

oxygen, etc.) and voltage
 Results are based on the average of 8 experiments
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System Comparison

COD Removal Dissolved oxygen (cathode) pH (cathode)

Total N removal (anode)
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3- removal (anode)

Electrical performance
 Under a 1 kΩ load, AEM systems achieved mean power outputs roughly 2–4× 

higher than CEMs 
Mechanistic Insights
 AEM favors anion (OH⁻, HCO₃⁻) transport → improved pH balance and 

favorable algal environment → enhanced cathodic oxygen reduction and 
voltage stability

 CEM promotes cation (H⁺, NH₄⁺) migration → anode acidification + cathode 
stress → reduced bio electrochemical performance

Conclusion
 AEM membranes offer a better balance between energy generation and 

cathode stability, while CEMs emphasize nutrient removal at the cost of 
electrical efficiency

• AEM: ~36.9%
• CEM: ~41.9%

• AEM: ΔDO ≈ −0.65 mg/L 
• CEM: ΔDO ≈ -1.48 mg/L 

• AEM: ΔpH ≈ -0.49
• CEM: ΔpH ≈ -0.49

• AEM: ~8.7% (high 
variability)

• CEM: ~76.5% 
(consistently high)

NH4
+ removal (anode)

• AEM: ~10.7%
• CEM: ~72.7%

• AEM: ~31% 
• CEM: around -10% 

(slight apparent 
       increase)
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