

The 9th International Electronic Conference on Water Sciences

11-14 November 2025 | Online

The Role of Cation and Anion Exchange Membranes on Power Generation and Nutrient Removal in a Microalgae-Assisted Microbial Fuel Cell

Aeneas Robert Hoffman¹, Khin Thandar Tun^{2, 3}, Veera Gnaneswar Gude^{1,2, 3}

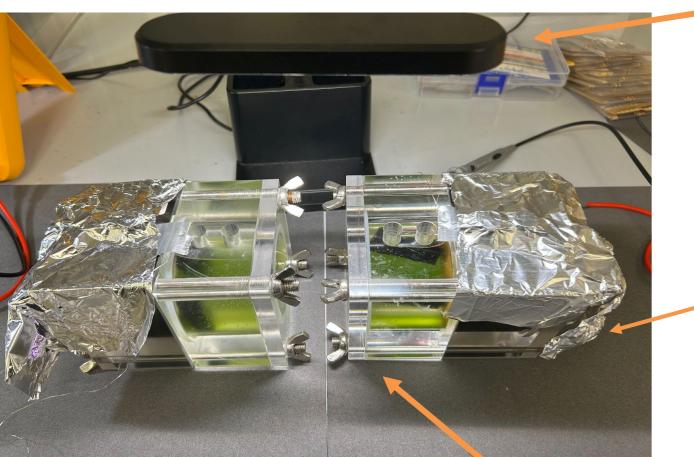
¹Purdue Univ. School of Sustainability Eng. And Environmental Eng.,

²Purdue Univ. Northwest Dept. of Mechanical and Civil Eng.

³Purdue Univ. Northwest Water Institute

INTRODUCTION & AIM

Background


- ➤ Wastewater Treatment Plants (WWTPs) are energy intensive (3-4% of US electrical load 110 TWh/year 9.6 million households' annual electricity)
- ➤ Microbial Fuel Cells (MFCs) convert stored chemical electricity in wastewater directly to electricity, as well as lower chemical oxygen demand (COD)
- ➤ MFC limitations:
 - Low power density
 - Limited nutrient removal
 - Electrode/membrane costs

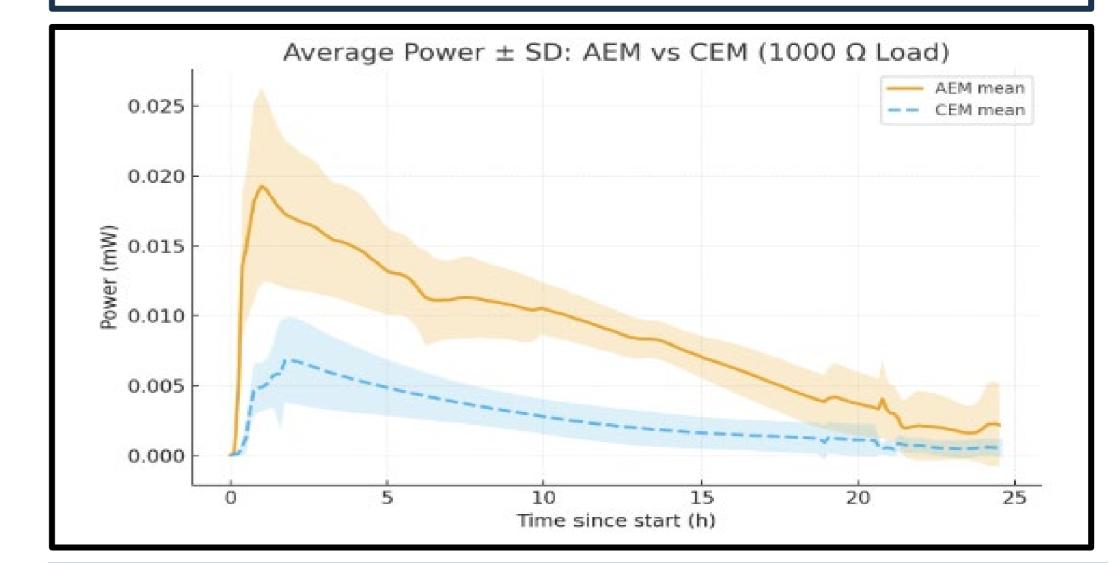
Microalgae-Assisted MFCs Wire + resistor (Anode) Substrate \rightarrow CO₂ + H⁺ + e⁻ [unbalanced] (Cathode) O₂ + 4H⁺ + 4e⁻ \rightarrow H₂O Wastewater (Algae) CO₂ + H₂O + light \rightarrow biomass + O₂ Biocathode CO₂ H H OZ Biocathode Co₂ H Co₃ Microalgae Companies of the compa

- ➤ Ion exchange membranes facilitate the exchange of ions between the MFC anode and cathode chambers
- Both cation exchange membranes (CEMs) and anion exchange membranes (AEMs) can be used, among other types
- \triangleright CEMs allow positive ion transport (e.g., H⁺, NH₄⁺)
- AEMs allow negative ion transport (e.g., OH⁻, NO₃⁻, PO₄³⁻)
- This research aims to assess whether CEMs or AEMs best address MFC limitations (power density, nutrient removal)

METHOD

Biocathode MFC configuration

Light source


Anode, preliminary wastewater + secondary sludge (covered with foil)

Biocathode, algae (chlorella vulgaris) + DI water

- One MFC using AEM, one MFC using CEM
- \triangleright Voltages recoded with multimeter (1000 Ω resistor, titanium wire)
- Measured water quality parameters (COD, nutrients, pH, dissolved oxygen, etc.) and voltage
- > Results are based on the average of 8 experiments

RESULTS

System Comparison pH (cathode) **COD Removal** Dissolved oxygen (cathode) **AEM:** ΔpH ≈ -0.49 AEM: $\Delta DO \approx -0.65 \text{ mg/L}$ **AEM: ~36.9% CEM:** ΔpH ≈ -0.49 **CEM:** ΔDO ≈ -1.48 mg/L CEM: ~41.9% **Total N removal (anode)** PO₄3- removal (anode) • AEM: ~8.7% (high **AEM: ~31%** variability) CEM: around -10% CEM: ~76.5% (slight apparent (consistently high) increase) NH₄⁺ removal (anode) **AEM: ~10.7%** CEM: ~72.7%

DISCUSSION

Electrical performance

 \triangleright Under a 1 kΩ load, AEM systems achieved mean power outputs roughly 2–4× higher than CEMs

Mechanistic Insights

- ightharpoonup AEM favors anion (OH⁻, HCO₃⁻) transport ightharpoonup improved pH balance and favorable algal environment ightharpoonup enhanced cathodic oxygen reduction and voltage stability
- ightharpoonup CEM promotes cation (H⁺, NH₄⁺) migration ightharpoonup anode acidification + cathode stress ightharpoonup reduced bio electrochemical performance

Conclusion

➤ AEM membranes offer a better balance between energy generation and cathode stability, while CEMs emphasize nutrient removal at the cost of electrical efficiency

FUTURE WORK

- ➤ Other exchange membranes in algae-integrated MFCs, e.g., proton exchange membranes (PEMs) or bipolar membranes (BIMs)
- Mixed algal-bacterial consortia synergizing pollutant uptake (organics, nitrogen, phosphorous) with power generation

Acknowledgments

Thanks to my supervisor, Dr. Veera Gnaneswar Gude, and my graduate mentor, Khin Thandar Tun, for their guidance during this research process.

REFERENCES

- 1. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed.). Wiley.
- 2. Gude, V. G. (2016). Wastewater treatment in microbial fuel cells an overview. Journal of Cleaner Production, 122, 287—307. https://doi.org/10.1016/j.jclepro.2016.02.022
- 3. Itoshiro, R., Yoshida, N., Yagi, T., Kakihana, Y., & Higa, M. (2022). Effect of ion selectivity on current production in sewage microbial fuel cell separators. Membranes, 12(2), 183. https://doi.org/10.3390/membranes12020183