

The 9th International Electronic Conference on Water Sciences

11-14 November 2025 | Online

Assessment of Trombidiidae (Acari) as Biondicators for Wastewater Treatment in a Constructed Wetland

João Pedro Correia de Sousa Magalhães 1, Sofia Pereira 2, Chi Man Leong 3 4, John Hongxi Xu 3, Cristina S.C. Calheiros 1

1 CIIMAR/CIMAR LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal

2 CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Portugal 3 Guangdong Provincial/Zhuhai Key Laboratory of Interdisciplinary Research and Application for Data Science, Beijing Normal-Hong Kong Baptist University, Zhuhai, China

4 Department of Life Sciences, Faculty of Science and Technology, Beijing Normal -Hong Kong Baptist Universit, Zhuhai, China

INTRODUCTION & AIM

The family Trombidiidae (superorder Acariformes), with common names such as red velvet mites, exhibits dietary habit shifts throughout their development.

Larvae are parasitic, while nymphs and adults transition to a free-living, soil-dwelling predator stage (Durkin et al., 2021). Predation by these mites is usually done in rocks, tree stumps, plants, leaf litter, and moss, with other arthropods and their eggs being their prey. These hunting environments fit the habitat created by constructed wetlands (CWs) biological wastewater treatment systems, mimicking the processes and conditions that occur in natural wetlands (Calheiros et al., 2015).

A macrofauna assessment was performed in a CW located in a tourism house in the north of Portugal, near Ponte de Lima, to understand its performance after 15 years of operation, with Trombidiidae mites being found.

METHOD

This work involved seasonal sampling of macrofauna at multiple collection spots within and around the CW, with pitfall trapping being complemented by substrate core sampling to assess both belowground and aboveground communities (Figure 1 and 2). This occurred across the Autumn of 2022 to the Summer of 2023.

The collected specimens were sorted by taxonomic group, identified further, when possible, photographed and quantified, with statistical analysis currently underway.

Figure 1 – Pitfall being set

Figure 2 – Pitfall being collected

Acknowledgments

This study integrates the project, entitled "Integrated Approaches at Local Scale for Enhancing Water Reuse Efficiency and Sustainable Soil Fertilization from Wastewater's Recovered Nutrients-CIRQUA", Grant agreement No 2321 Call 2023 Section 1 Management of Water IA, is part of the PRIMA programme supported by the European Union. The PRIMA programme is supported under Horizon 2020 the European Union's Framework Programme for Research and Innovation. CIIMAR authors are thankful to Strategic Funding UIDB/ 04423 2020 UIDP/ 04423 2020 and LA/P/ 0101 2020. SIA Pereira also thank the CBQF scientific collaboration under the FCT project UIDB/50016/2025 and the Assistant Researcher contract (2023.15056.TENURE.047) through the FCT-TENURE Program funded by the Recovery and Resilience Plan (PRR).

RESULTS & DISCUSSION

The presence of Trombidiidae was confirmed in all seasons in the 15-year-old CW, implying that this CW maintains favorable environmental conditions year-round (Figure 3 and 4). This tracks with the hypothesis of the environment created by the CW mimicking the natural habitats in which these predators hunt.

The simultaneous occurrence of spiders, preferred hosts for the larval stage of these mites, within the same system indicates that their life cycle is likely sustained within this system. The fact that these spiders are numerous might also imply a robustness in their population, with their numbers not being heavily affected by the parasitism.

As both parasites and predators of the biodiversity presented in the CW, Trombidiidae may contribute to a deeper understanding of the food web within these systems, providing proof as bioindicators of the ecological and habitat benefits CWs can provide.

Figure 3 – The Constructed Wetland

Figure 4 – Trombidiidae specimens

CONCLUSION

Preliminary results indicate a robust and well-structured ecosystem, with the consistent presence of Trombidiidae across all seasons, suggesting a stable population, with hosts for the larval stage, ensuring their cycle of life.

REFERENCES

Durkin, E. S., Cassidy, S. T., Gilbert, R., Richardson, E. A., Roth, A. M., Shablin, S., & Keiser, C. N. (2021). Parasites of spiders: Their impacts on host behavior and ecology. *The Journal of Arachnology*, 49(3), 281-298.

Calheiros, C. S., Bessa, V. S., Mesquita, R. B., Brix, H., Rangel, A. O., & Castro, P. M. (2015). Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. *Ecological Engineering*, 79, 1-7.