

The 9th International Electronic Conference on Water Sciences

11-14 November 2025 | Online

REMOVAL OF HEAVY METALS FROM DRINKING WATER THROUGH **AGRI-FOOD BIOADSORBENTS**

Zaremba M.A. (1), García-Prieto J.C. (1), Zazo S. (1,2), García-Roig M. (1), Molina J.L. (1,2)

- (1) CIDTA (Center for Water Research and Technological Development), Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, C/Licenciado Méndez Nieto, 37008 Salamanca, Spain; marviczt@usal.es; jcgarcia@usal.es; mgr@usal.es
- (2) IGA Research Group, Area of Hydraulic Engineering, High Polytechnic School of Engineering Ávila, University of Salamanca, Av. de los Hornos Caleros, 50, 05003 Ávila, Spain; szazo@usal.es; jlmolina@usal.es

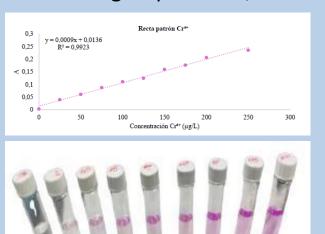
INTRODUCTION & AIM

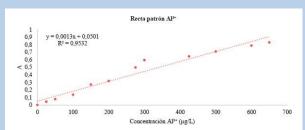
Heavy-metal pollution poses environmental and health risks: Cr6+ is a recognised human carcinogen and Al3+ is linked to potential neurotoxicity. Spanish RD 3/2023 sets 25-50 μg/L for total chromium and 200 µg /L for aluminum in drinking water.

Biosorption consists in using low-cost biomasses and it offers an effcient, affordable alternative to conventional treatments.

The principal aims were (1) to evaluate pig bristles (PB) and rice- husk reject (RH) as biosorbents for Cr6+ and Al3+ in synthetic waters; (2) to study the effects of pH, initial concentration of metal and acid pretreatment of PB; (3) mechanisms to verify by FT-IR; (4) to fit data to Langmuir/Freundlich isotherms.

METHOD

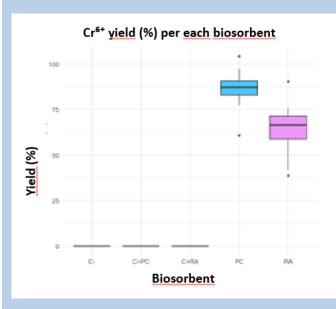

Biosorbents: pig bristles (MAGUISA, Guijuelo) cleaned, by 0.2 M NaOH (48 h), then acid hydrolysis HCl 8 M (16.5 h); ricehusk reject (ICMM-CSIC) used without pretreatment.

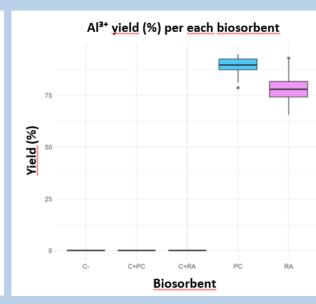

Analytics:

- Cr⁶⁺ by 1,5-diphenylcarbazide, 540 nm; calibration $R^2 = 0.9923 (0-250 \mu g/L).$
- Al³+ by eriochrome cyanine R, ≈535 nm; calibration $R^2 = 0.9532 (0-650 \mu g/L)$.

Batch tests conditions: 10 mL, 0.10 g biosorbent, 150 rpm, 22 °C, 240 min; pH 3.0 (Cr⁶⁺) and pH 4.0 (Al³⁺); ranges: Cr⁶⁺ 20-200 μ g/L, Al³⁺ 100–600 μ g/L.

Modeling: Langmuir/Freundlich isotherms. FT-IR used to probe functional groups before/after metal uptake.




FUNDING

This work was supported by the Salamanca University [Call for Market-Oriented Prototypes, TCUE PLAN 2024-2027].

RESULTS & DISCUSSION

- •Cr⁶⁺ removal (20–200 μg/L): Pig bristles (PB) consistently achieved ≥ 85 %, outperforming rice husk (RH) (~ 65 %). Data fitted Langmuir, suggesting monolayer adsorption on homogeneous sites.
- Al³⁺ removal (100–600 μ g/L): PB reached ~ 84–92 % (peak \approx 92.4 % at 400 μ g/L); RH delivered ~ 71–91 % with higher variability; Langmuir again provided the best fit.
- Mechanism (FT-IR): spectra changes indicate participation of –NH₂, –COOH, –OH, –SH (keratin matrix) in metal binding; high Cr6+ exposure was used in FT-IR to ensure detectable band shifts.
- Interpretation: PB's superior performance is attributed to its keratin-rich surface with abundant functional groups; RH is effective but structurally more heterogeneous (siliceous fraction).

CONCLUSION

Acid-treated pig bristles show high capacity and efficiency for Cr6+ and Al3+, surpassing rice husk under the tested conditions. Equilibrium follows Langmuir, and kinetics are compatible with pseudo-first-order behavior. FT-IR supports the role of keratin functional groups in metal uptake. This is circular-economy approach low-cost, for water remediation.

FUTURE WORK / REFERENCES

Validation in real waters (interferents, multi-metal competition); textural (BET) and surface (SEM-EDX/XPS) characterization; regeneration/reuse and fixed-bed trials; techno-economic and LCA assessment.