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INTRODUCTION Deep Leal‘ning for Parameter Estimation J Performance metrics: 2D CNN and SWATcup (SC) (SPE: Single/Multi)
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Hydrologic and water quality models simulate essential geophysical processes within d Deep learning using 2D CNNs: Workflow for SWAT parameter estimation 2D - CNN_SC-multi SCsingle|2D - CNN SC-multi SC-single|2D - CNN SC-multi SC-single| 2D - CNN_SC-multi SC-single
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and managing water resources under varying land use and climate conditions. The training/ validating / testing S R0

Soil and Water Assessment Tool (SWAT) is a widely used, process-based, and | PBias
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learning techniques capable of handling high-dimensional parameter spaces. e respanses | |

| | d Calibration (2014-2019) & validation (2020-2022): Observed and
METHOD simulated monthly watershed responses based on 2D CNN and SWAT-cup

Hydrologic and Water Quality Modeling

] Study watersheds: East Fork Shoal (EFS) and Lost (LST) Creeks, which are
tributaries of the Kaskaskia River watershed, are being monitored as part of the

Conservation Reserve Enhancement Program (CREP) in Illinois. d Hyperparameter tuning: Identifying the best 2D CNN architecture by tuning

hyperparameters including filter, kernel and pool sizes, learning and dropout
rates, epochs and batch sizes

d Watershed monitoring by ISWS: Flow, sediment, and nutrient data collected
at the outlets of the CREP study watersheds since 2014.

CNN hyperparameters explored using grid search
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This study shows that using 2D CNNs for parameter estimation significantly
improves the accuracy and efficiency of hydrologic and water quality modeling.
Integrating deep learning with SWAT produced robust predictions of sediment,
nutrient, and flow in the EFS and LST watersheds. The results highlight the potential
: . of artificial intelligence for advancing watershed management and monitoring, with
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