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INTRODUCTION

This study examines the potential of satellite gravimetry to monitor basin-scale hydrological
variability across Greece by downscaling coarse-resolution terrestrial water storage anomalies
derived from the Gravity Recovery and Climate Experiment (GRACE) and its successor mission, GRACE
Follow-On. Monthly Liquid Water Equivalent (LWE) anomalies from mascon solutions ~1° resolution
(~110 km) are refined to 0.1° (~10 km) using a supervised machine learning approach. The resulting
high-resolution product is assessed through cross-comparisons with independent satellite datasets.
By integrating satellite gravimetry, environmental indicators, and machine learning techniques, we

propose a scalable framework for enhancing the spatial resolution of terrestrial water monitoring in
data-scarce regions.

METHODOLOGY

The first step of the methodology refers to the
downscaling the coarse spatial analysis of
GRACE mascon’s solutions by utilizing a
boosting  regression  machine learning
algorithm. As predictor variables we used time

series of parameters derived from the :
monthly reanalysis of the ERA 5 satellite.
Predictor variables from ERA5 Units
monthly reanalysis dataset
Volumetric soil water layer 1(0 - 7cm) [m3 m3]
Volumetric soil water layer 2 (7-28cm)  [m3 m3]
Volumetric soil water layer 3 (28 - [m3 m3] :
100cm)
Volumetric soil water layer 4(100 - [m3 m3]
298cm)
Sub-surface runoff [m]
Surface runoff [m]
Evaporation [m] )
Total precipitation [m] )

The ML technique that we used was based on
a boosting function that adds up many small

ye= G0 = fo+1 ) Tnx)
m=1

Where:

* fo:asimple starting guess of LWE

 Each tree T, is tiny and fixes leftover
error from the previous trees.

* 1 (learning rate) keeps steps small and
stable.

39.200

MAE RMSE
2.4438 3.2448

R2 BIAS
0.8914 0.4608

CORR
0.9462

We evaluated 20 randomly chosen parameter combinations using a five-fold cross-validation setup

with the negative MAE metric (i.e., minimizing MAE). The total grid contained 3° = 729 possible

combinations, from which 20 were sampled at random for efficiency.

In the maps presented, which refers to October 2023 at Pinios Basin, the predicted LWE closely

matches the real GRACE data, with a very high correlation (0.95) and R? = 0.89, meaning about 89%

of the variance is explained; the low MAE (=2.4 cm) and small positive bias (=0.46 cm) suggest only

minor systematic overestimation.

To further assess whether the predictions capture meaningful hydrological variability, we compared
the results of the process of ML with data related to Lake Polifitou and Lake Kremasta, which are
both important regulated reservoir. Specifically, for Lake Polifitou and Kremasta we obtained:

e Lake-level time series derived from satellite radar altimetry (Jason-1, Jason-2/0STM, Jason-3,
and Sentinel-6) from NASA GWM service.

e Soil moisture dataset derived from derived from Active Microwave Instrument - WindScat (AMI-
WS) and ASCAT (Metop-A, Metop-B, Metop-C) from ESA’s CDS service

The comparison was performed through a number of statistical correlation measures (zero-lag
Pearson correlation, Spearman rank correlation, Lagged correlation analysis).

RESULTS

Lake Polifitou Lake Kremasta

Polyfytou — ALL: standardized scatter (r=-0.54) Polyfytou: standardized scatter (r=0.20) Kremasta — ALL: standardized scatter (r=-0.48) Kremasta: standardized scatter (r=0.25)

LWE {z-score)
LWE {z-score)
LWE {z-score)

-1 0 1 2 3 4 5
Lake height anomaly (z-score) SSM (z-score) Lake height anomaly (z-scare) SSM (z-score)

Lake Polifitou

Polyfytou — ALL: r0=-0.54 (Pearson, n=189), best lag=1.0, r=-0.7679059156151743

Lake Kremasta

Kremasta — ALL: r0=-0.48 (Pearson, n=201), best lag=2.0, r=-0.7817089862745199
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2012 2016 2024

Date (monthly)

2012 2016 2020 2024 2004 2008

Date (monthly)

2004

Mission Pearson Spearman Bestlag Bestlag_r Mission Pearson Spearman Bestlag Bestlag_r

ALL -0.54496 -0.54216 1 -0.76791 ALL -0.48484 -0.49598 2 -0.78171
JASN2  -0.53475 -0.53126 -4 0.83792 JASN2 -0.4386 -0.46538 2 -0.79867
JASN3  -0.64719 -0.64712 1 -0.79691 JASN3  -0.52411 -0.53383 -4 0.80378
SENT6 -0.51636 -0.51761 2 -0.74130 SENT6  -0.56131 -0.55126 1-0.77337

The correlation over Lake Polifitou demonstrates a good hydrological agreement across most
satellite missions. For the aggregate “ALL” altimetry record, the zero-lag correlation reaches r =
0.545 (Spearman = 0.542), while mission-specific analyses show even stronger relationships, notably
for JASON-3 (ro = 0.65) and Sentinel-6 (ro = 0.52). These missions also exhibit best correlations at
short positive lags (+1 to +2 months), suggesting that modeled storage anomalies slightly lead
observed lake height changes, which is hydrologically logical, since GRACE senses basin-wide mass
gain before that water accumulates at the reservoir surface. The soil-moisture comparison at the
same point reinforces this interpretation. Although the zero-lag correlation is modest (r = 0.20), the
maximum correlation increases sharply (r = 0.69) when the soil-moisture series is shifted 2 months
earlier (lag = -2).

The altimetry—LWE correlations for Lake Kremasta reveal a similar but slightly weaker pattern. Across
all missions combined, the zero-lag Pearson correlation is 0.48, increasing to 0.56 for Sentinel-6 and
0.52 for JASON-3. Best correlations are typically found at short positive lags (1-2 months), with values
up to r = 0.78-0.80, suggesting that LWE variations precede the lake-level response by roughly one to
two months—this is what it was observed at lake Polifitou too. For the Kremasta site, the soil-
moisture relationship shows low zero-lag correlation (r = 0.25) and a negative best-lag correlation (r =
—0.49 at +4 months), implying a delayed coupling between shallow soil moisture and total storage.

CONCLUSION

The downscaled GRACE LWE product demonstrates a strong ability to reproduce basin-scale
hydrological variability. Comparison with altimetry over the lakes yielded correlation coefficients

between 0.51 and 0.65 at zero lag, improving to 0.7-0.8 when accounting for a 1-4-month lag,

indicating that are physically consistent with observed lake-level changes. The observed tendency for

LWE to lead altimetry reflects realistic catchment behavior, where basin-wide water mass increases
(soil and groundwater recharge) precede surface storage responses in the reservoirs. Correlations

with surface soil moisture (SSM) were lower at zero lag (=0.2) but strengthened markedly (to =0.5—

0.7) when accounting for the faster response of surface moisture to precipitation, confirming that
SSM leads LWE by 1-2 months—a hydrologically coherent sequence of rainfall infiltration and
subsurface recharge. Together with the direct comparison to the official GRACE dataset (R? = 0.89,

Corr = 0.95), these results demonstrate that the ML downscaling approach can capture both rapid
surface responses and slower subsurface dynamics.
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