

# The 12th International Electronic Conference on Sensors and Applications

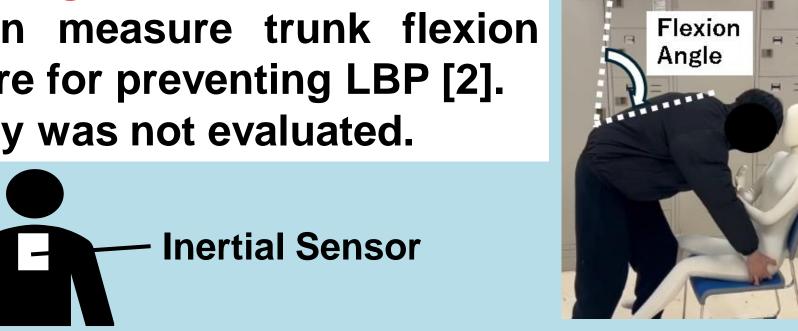


12-14 November 2025 | Online

## Fundamental Evaluation of a Single Inertial Sensor in Trunk Angle Measurement During Patient Repositioning

Kodai Kitagawa<sup>1\*</sup>, Yudai Ishikawa<sup>1</sup>, Tadateru Kurosawa<sup>1</sup>, Ryo Uchimura<sup>2</sup>, Shinji Murata<sup>2</sup>, Chikamune Wada<sup>2</sup>

<sup>1</sup>National Institute of Technology, Hachinohe College, Hachinohe, Japan <sup>2</sup>Kyushu Institute of Technology, Kitakyushu, Japan


#### INTRODUCTION & AIM

## **Trunk Flexion in Patient Handling**

→ Cause of Lower Back Pain (LBP) [1]

## Wearable Single Inertial Sensor

- **→**This can measure trunk flexion anywhere for preventing LBP [2].
- **→**Accuracy was not evaluated.



Aim of this study was to evaluate the accuracy of a single inertial sensor for trunk flexion measurements during patient handling.

### **METHOD**

## **Experiment**

## **Participants**:

10 young males

**Patient Handling Task:** Repositioning on the Chair (10 trials for each participant)



#### Measurement

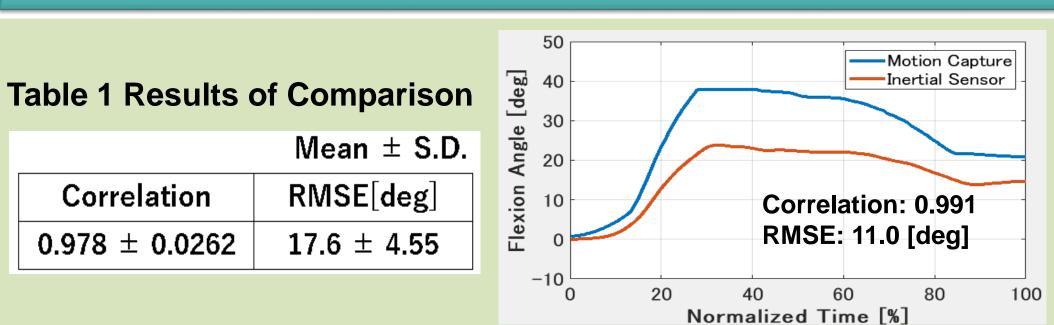
**Sampling Rate: 100 Hz** 

## **Markers** (for motion capture) Inertial Sensor

#### **1** Inertial Sensor:

→ The Madgwick filter [3] was applied to calculate the trunk flexion angle from acceleration and gyro data.

(magnetic adjustment was not used for robustness in environment)


#### Optical Motion Capture System (Ground Truth):

**→** This device was used as ground truth.

#### **Evaluation**

- Pearson's Correlation Coefficient
- **RMSE** (Root Mean Squared Error)

## **RESULTS & DISCUSSION**



**Fig.1 Example of Time Waveform** 

#### Correlation

There is high correlation more than 0.9 between the inertial sensor and ground truth.



Inertial sensor could measure temporal changes in trunk flexion during patient handling.

### **RMSE**

- RMSE with ground truth is more than 15 degrees.
- Trunk flexion angles differ by 10 degrees between lifting motions with different lumbar loads [4].



Absolute error of an inertial sensor should be improved for monitoring lumbar loads.

#### **Future Works**

- Error of trunk angle calculation will be improved by further signal processing such as machine learning.
- Inertial sensor should be evaluated for various patient handling tasks and caregivers.

#### **CONCLUSION**

This study evaluate the accuracy of a single inertial sensor for trunk flexion measurements during patient handling.

The results showed that inertial sensor could measure temporal changes in trunk flexion during patient handling.

**Acknowledgments:** This work was supported by JSPS KAKENHI (Grant Number: 23K17262).

**Conflict of Interest:** The authors declare no conflict of interest.

## References

- [1] M. Nourollahi, et al., Work, vol. 59, no. 3, pp. 317–323, 2018.
- [2] M. Porta, et al., IJERPH, Vol.17, No.19, p.7117, 2020.
- [3] S. Madgwick, Report x-io and University of Bristol (UK), Vol.25, pp.113-118, 2010.
- [4] R.F. Escamilla, et al., Medicine and science in sports and exercise, Vol.32, No.7, pp.1265-1275, 2000.