

The 12th International Electronic Conference on Sensors and Applications

08-10 December 2025 | Online

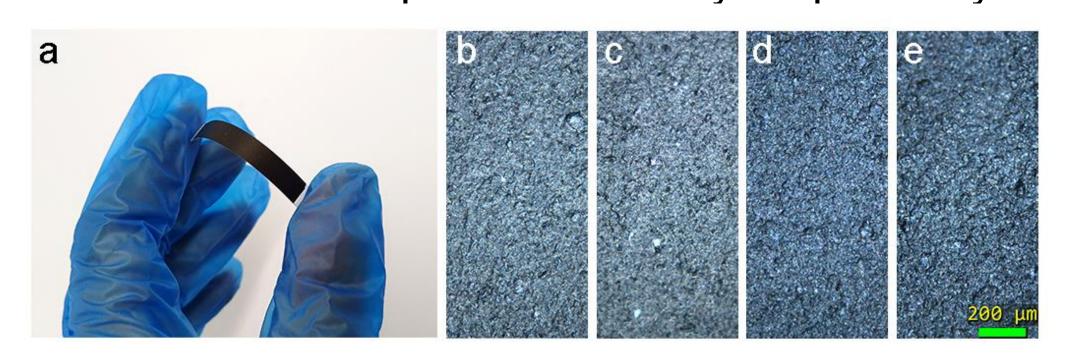
Development of Paper-Based Thermal Devices Using Graphene and Carbon Black Composite Inks for Flexible Printed Electronics

Dimitris Barmpakos¹, Apostolos Apostolakis¹, Vassiliki Belessi², Vasilios Georgakilas³, Grigoris Kaltsas¹

¹ microSENSES Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, Athens,

Greece

² Department of Graphic Design and Visual Communication, University of West Attica, Athens, Greece ³ Department of Materials Science, University of Patras, Rio, Greece


INTRODUCTION & AIM

- © Growing demand for sustainable electronics leads to paper electronics
- Eco-aware material development for conductive inks
- Hybrid, cost-effective material design¹

In this study, we developed paper-based sensors and heaters using two custom-formulated water-based conductive inks. The facile coating technique allows for rapid, on-demand fabrication of thermally active printed devices on paper, with comparable performance to traditional similar devices.

METHOD

- Two water-based conductive inks were formulated: (1) reduced graphene oxide (rGO) and (2) a composite of carbon black and reduced graphene oxide (CB₇₀rGO₃₀).
- Electrical evaluation was performed (four-point I-V), while temperature sensing and heater performance were assessed through TCR determination and power efficiency respectively.

Figure 1. Printed device on glossy paper (a) optical microscopy surface of the samples (b-e).

Optical microscopy and white light interferometry was employed to characterize surface morphology

RESULTS & DISCUSSION

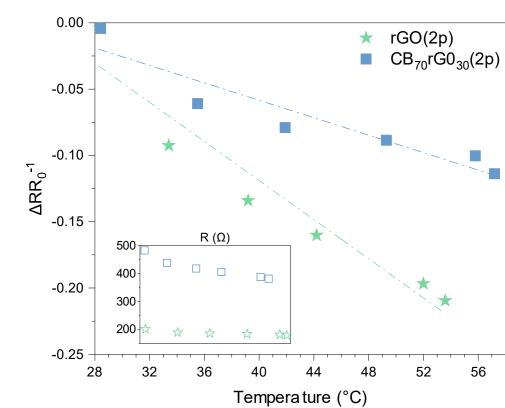


Figure 2. Temperature – normalized resistance relationship

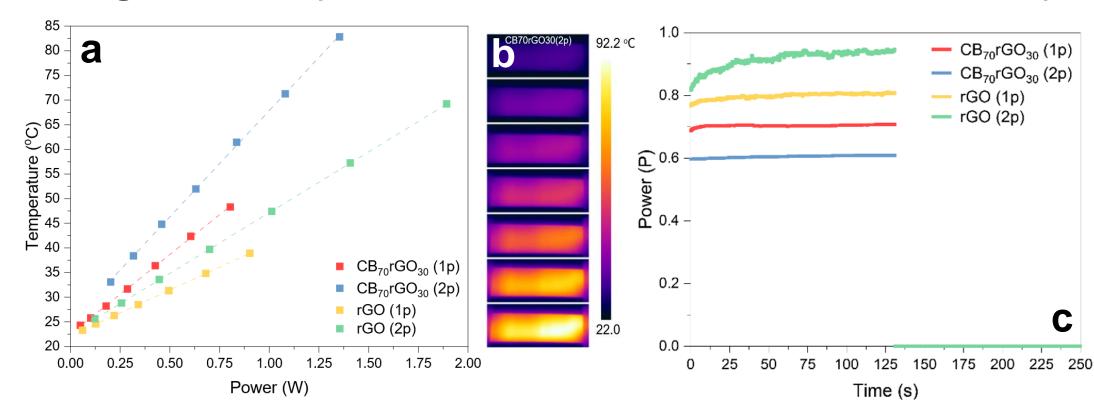


Figure 3. Power – temperature (a), IR profile for one sample (b) and power required to reach 55 °C for each sample

- \odot CB₇₀rGO₃₀(2p) sample demonstrates superior electrical-to-thermal power conversion owing to carbon-black particles (improved thermal conductivity, uniform thermal field, Fig. 3a,b).
- The same sample reached 55 °C with 600 mW, validating its superior efficiency (Fig. 3c)

CONCLUSION

- © Combining rGO and carbon-black inks for paper-based sensors and heaters, with paper's insulating nature assisting the printed structures for both efficient sensing and heating

FUTURE WORK / REFERENCES

Sensors (2022) 22:1173, doi:10.3390/s22031173